TCP IP网络编程(四) 基于TCP的服务器端、客户端

news2024/10/3 4:37:27

文章目录

    • 理解TCP、UDP
      • TCP/IP协议栈
      • 链路层
      • IP层
      • TCP/UDP层
      • 应用层
    • 实现基于TCP的服务器端、客户端
      • TCP服务器端的默认函数调用顺序
      • 进入等待连接请求状态
      • 受理客户端连接请求
      • TCP客户端的默认函数调用顺序
      • 基于TCP的服务器端、客户端函数调用关系
    • 实现迭代服务器端、客户端
      • 实现迭代服务器端
      • 迭代回声服务器端、客户端

理解TCP、UDP

TCP/IP协议栈

TCP/IP协议栈

请添加图片描述

TCP/IP协议栈共分为4层,可以理解为数据收发分成了4个层次化过程。

TCP协议栈

在这里插入图片描述

UDP协议栈

在这里插入图片描述

链路层

链路层是物理连接领域标准化的结果,也是最基本的领域,专门定义LAN、WAN、MAN等网络标准。两台主机通过网络进行数据交换,这需要像下图所示的物理连接,链路层就负责这些标准。

在这里插入图片描述

IP层

IP协议是面向消息的,不可靠的协议。每次传输数据时会帮我们选择路径,但并不一致。如果传输中发生路径错误,则选择其他路径。但如果发生数据丢失或错误,则无法解决。IP协议无法应对数据错误。

TCP/UDP层

IP层解决数据传输中路径选择问,只需要按照此路径传输数据即可。TCP和UDP层以IP层提供的路径信息为基础完成实际的数据传输,故该层又称为传输层。TCP可以保证可靠的数据传输,但它发送数据时以IP层为基础。

在这里插入图片描述

TCP和UDP存在于IP层之上,决定主机之间的数据传输方式,TCP协议确认后向不可靠的IP协议赋予可靠性。

应用层

以上类容是套接字通信过程中自动处理的。选择数据传输路径、数据确认过程都被隐藏到套接字内部。但掌握了这些理论,才能编写出符合需求的网络程序。

向大家提供的工具就是套接字,大家只需要利用套接字编写出程序即可。编写软件的过程中,需要根据程序特点决定服务器端和客户端之间的数据传输规则,这便是应用层协议。网络编程的大部分内容就是设计并实现应用层协议。

实现基于TCP的服务器端、客户端

TCP服务器端的默认函数调用顺序

1、socket()    		创建套接字
2、bind()			分配套接字地址
3、listen()			等待连接请求状态
4、accept()			允许连接
5、read()/write()	数据交换
6、close()			断开连接

进入等待连接请求状态

我们已经调用bind函数给套接字分配了地址,接下来通过调用listen函数进入等待连接请求状态,只有调用了listen函数,客户端才能进入可发出连接请求的状态,这时客户端才可以调用connect函数。

#include<sys/socket.h>

int listen(int sock, int backlog);
	成功返回0,失败返回-1
    sock	为希望进入等待连接请求状态的文件描述符,传递的描述符套接字参数为服务器端套接字
    backlog 连接请求等待队列的长度,若为5,则队列长度为5,表示最多使5个连接请求进入队列

等待连接请求状态是指客户端请求连接时,受理连接前一直使连接处于等待状态,客户端连接请求本身也是网络中收到的一种数据,而想要接受就需要套接字。

受理客户端连接请求

调用listen函数后,有新的连接请求,则应按序受理。受理请求意味着进入可接受数据的状态,此时就需要套接字来接受数据,但服务器端的套接字在做门卫,不能再充当接受数据的角色。因此需要另外一个套接字,该套接字不需要亲自创建,accept函数将会创建套接字并连接到发起请求的客户端。

#include <sys/socket.h>

int accept(int sock, struct sockaddr* addr, socklen_t* addrlen);
	成功返回创建的套接字文件描述符,失败返回-1
    sock  	服务器套接字的文件描述符
	addr  	保存发起连接请求的客户端地址信息的变量的地址,调用函数后会向该变量填充客户端地址信息
	addrlen	第二个参数addr结构体的长度,调用函数后会向该变量填充客户端地址长度

accept函数受理连接请求等待队列中待处理中的客户端连接请求。函数调用成功时,accept函数内部将产生用于数据I/O的套接字,并返回文件描述符,套接字使自动创建的,并且自动与发起连接请求的客户端建立连接。

TCP客户端的默认函数调用顺序

TCP客户端函数的调用顺序

1、socket()			创建套接字
2、connect()			请求连接
3、read()/write()	交换数据
4、closr()			断开连接

与服务器端相比,区别就在于请求连接,它使创建客户端套接字后向服务器端发起的连接请求,服务器端调用listen函数后创建请求等待队列,之后客户端即可请求连接。

#include<sys/socket.h>

int connect(int sock, struct sockaddr* servaddr, socklen_t addrlen);
	成功返回0,失败返回-1
     sock  		客户端套接字文件描述符
	 servaddr	保存目标服务器地址信息的变量地址值
	 addrlen	以字节为单位,传递第二个参数的地址变量的长度

客户端调用connect函数后,发生以下情况才会返回

  • 服务器端接受连接请求
  • 发生断网等异常情况而中断连接请求

接受连接请求并不是服务器端调用accept函数,其实是服务器端把连接请求信息记录到等待队列中,因此connect函数返回后并不立即进行数据交换

基于TCP的服务器端、客户端函数调用关系

在这里插入图片描述

总体流程如下:

​ 服务器端创建套接字后连续调用bind、listen函数进入等待状态,客户端通过调用connect函数发起连接请求,客户端侄女等到服务器端调用listen函数之后才能调用connect发起连接请求,也要主义客户端调用connect函数前,服务器端可能率先调用accept函数,此时服务器端调用accept函数进入阻塞状态,知道客户端调用connect函数为止。

实现迭代服务器端、客户端

实现迭代服务器端

在这里插入图片描述

实现迭代服务器端最简单的办法就是插入循环语句反复调用accept函数。循环最后的close(client)关闭的调用accept函数创建的套接字,意味着结束了针对某一客户端的服务,此时如果还想服务于其他客户端,就要重新调用accept函数。目前同一时刻只能服务于一个客户端,学完进程和线程后,就可以编写同时服务于多个客户端的服务器端。

迭代回声服务器端、客户端

回声服务器端以及配套的回声客户端的程度的基本运行方式:

  • 服务器端在同一时刻只与一个客户端相连,并提供回声服务。
  • 服务器端依次向5个客户端提供服务并退出。
  • 客户端接受用户的输入字符串并发送到服务器端。
  • 服务器端将收到的字符串数据传回客户端,即“回声”。
  • 两端之间的字符串回声一直执行到客户端输入Q为止。

首先介绍满足以上要求的回声服务器端

echo_server.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 1024
void error_handling(char *message);

int main(int argc, char *argv[])
{
	int serv_sock, clnt_sock;
	char message[BUF_SIZE];
	int str_len, i;
	
	struct sockaddr_in serv_adr;
	struct sockaddr_in clnt_adr;
	socklen_t clnt_adr_sz;
	
	if(argc!=2) {
		printf("Usage : %s <port>\n", argv[0]);
		exit(1);
	}
	
	serv_sock=socket(PF_INET, SOCK_STREAM, 0);   
	if(serv_sock==-1)
		error_handling("socket() error");
	
	memset(&serv_adr, 0, sizeof(serv_adr));
	serv_adr.sin_family=AF_INET;
	serv_adr.sin_addr.s_addr=htonl(INADDR_ANY);
	serv_adr.sin_port=htons(atoi(argv[1]));

	if(bind(serv_sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)
		error_handling("bind() error");
	
	if(listen(serv_sock, 5)==-1)
		error_handling("listen() error");
	
	clnt_adr_sz=sizeof(clnt_adr);

	for(i=0; i<5; i++)
	{
		clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_adr, &clnt_adr_sz);
		if(clnt_sock==-1)
			error_handling("accept() error");
		else
			printf("Connected client %d \n", i+1);
	
		while((str_len=read(clnt_sock, message, BUF_SIZE))!=0)
			write(clnt_sock, message, str_len);

		close(clnt_sock);
	}

	close(serv_sock);
	return 0;
}

void error_handling(char *message)
{
	fputs(message, stderr);
	fputc('\n', stderr);
	exit(1);
}

运行结果

gcc echo_server.c -o eserver
./eserver 9190
输出:
Connecten client 1
Connecten client 2
Connecten client 3

回声客户端代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 1024
void error_handling(char *message);

int main(int argc, char *argv[])
{
	int sock;
	char message[BUF_SIZE];
	int str_len;
	struct sockaddr_in serv_adr;

	if(argc!=3) {
		printf("Usage : %s <IP> <port>\n", argv[0]);
		exit(1);
	}
	
	sock=socket(PF_INET, SOCK_STREAM, 0);   
	if(sock==-1)
		error_handling("socket() error");
	
	memset(&serv_adr, 0, sizeof(serv_adr));
	serv_adr.sin_family=AF_INET;
	serv_adr.sin_addr.s_addr=inet_addr(argv[1]);
	serv_adr.sin_port=htons(atoi(argv[2]));
	
	if(connect(sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)
		error_handling("connect() error!");
	else
		puts("Connected...........");
	
	while(1) 
	{
		fputs("Input message(Q to quit): ", stdout); 	//如果输入Q说明结束while循环
		fgets(message, BUF_SIZE, stdin);
		
		if(!strcmp(message,"q\n") || !strcmp(message,"Q\n"))  //检验message是否为Q/q
			break;

		write(sock, message, strlen(message));
		str_len=read(sock, message, BUF_SIZE-1);
		message[str_len]=0;
		printf("Message from server: %s", message);
	}
	
	close(sock);
	return 0;
}

void error_handling(char *message)
{
	fputs(message, stderr);
	fputc('\n', stderr);
	exit(1);
}

运行结果

gcc echo_client.c -o eclient
./eclient 192.168.233.20 9190
输出:
Connected ....
Input message: hello
Message from server: hello
Input message : Q

这是《TCP/IP网络编程》专栏的第四篇文章,欢迎各位读者订阅!

更多资料点击 GitHub 欢迎各位读者去Star

⭐学术交流群Q 754410389 持续更新中~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/983020.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法通关村第十六关:青铜挑战-滑动窗口其实很简单

青铜挑战-滑动窗口其实很简单 1. 滑动窗口基本思想 数组引入双指针的背景&#xff1a; 很多算法会大量移动数组中的元素&#xff0c;频繁移动元素会导致执行效率低下或者超时&#xff0c;使用两个变量能比较好的解决很多相关问题 数组双指针&#xff0c;之前介绍过 对撞型 和…

无涯教程-JavaScript - COMPLEX函数

描述 COMPLEX函数将实系数和虚系数转换为x yi或x yj形式的复数。 语法 COMPLEX (real_num, i_num, [suffix])争论 Argument描述Required/Optionalreal_numThe real coefficient of the complex number. Requiredi_numThe imaginary coefficient of the complex number.Re…

Java基础知识点汇总

一、Java基础知识点整体框架 详细知识点见链接资源&#xff0c;注&#xff1a;框架是用Xmind App完成&#xff0c;查看需下载。 二、基础知识各部分概况 2.1 认识Java 2.2 数据类型和变量 2.3 运算符 2.4 程序逻辑控制 2.5 方法的使用 2.6 数组的定义和使用 2.7 类和对象 2.8 …

Python入门学习14(面向对象)

一、内置方法 二、封装 1. 封装的概念是指&#xff1f; 将现实世界事物在类中描述为属性和方法&#xff0c;即为封装。 2. 什么是私有成员&#xff1f;为什么需要私有成员&#xff1f; 现实事物有部分属性和行为是不公开对使用者开放的。同样在类中描述属性和方法的时…

跑出创新加速度,AI基础软件成AIGC产业发展加速器

2023年中国国际服务贸易交易会&#xff08;以下简称“服贸会”&#xff09;受世界瞩目正在火热进行&#xff0c;9月4日&#xff0c;服贸会专题论坛之“2023中国AIGC创新发展论坛” 在大会期间成功举办&#xff0c;九章云极DataCanvas公司副总裁周晓凌受邀出席论坛&#xff0c;并…

【计算机视觉项目实战】中文场景识别

✨专栏介绍: 经过几个月的精心筹备,本作者推出全新系列《深入浅出OCR》专栏,对标最全OCR教程,具体章节如导图所示,将分别从OCR技术发展、方向、概念、算法、论文、数据集等各种角度展开详细介绍。 👨‍💻面向对象: 本篇前言知识主要介绍深度学习知识,全面总结知知识…

SW的stp文件转成CAD格式文件学习笔记

SW的stp文件转成CAD格式文件 如图一个STP文件&#xff0c;右上角标注是什么文件呢 另存为零件图&#xff0c;即另存为part 如图所示 用solidworks打开另存为的零件图&#xff0c;点击是&#xff0c;会识别特征 . 直接默认点对勾 之后会出现可编辑的零件图 另存为CA…

JVM调优记录

因为大量数据备份&#xff1b;导致在备份过程出现堆溢出的情况 当前情况 总内存&#xff1a;7.92G 已使用&#xff1a;3.7G jvm总内存最大&#xff1a;3.06G jvm非堆内存&#xff1a;最大1.23G&#xff0c;使用<170M jvm堆内存&#xff1a;最大1.83G 计算 如果预留2G扩展…

【教程】安防监控/视频存储/视频汇聚平台EasyCVR接入智能分析网关V4的操作步骤

TSINGSEE青犀AI边缘计算网关硬件 —— 智能分析网关目前有5个版本&#xff1a;V1、V2、V3、V4、V5&#xff0c;每个版本都能实现对监控视频的智能识别和分析&#xff0c;支持抓拍、记录、告警等&#xff0c;每个版本在算法模型及性能配置上略有不同。硬件可实现的AI检测包括&am…

深入理解联邦学习——联邦学习的分类

分类目录&#xff1a;《深入理解联邦学习》总目录 在实际中&#xff0c;孤岛数据具有不同分布特点&#xff0c;根据这些特点&#xff0c;我们可以提出相对应的联邦学习方案。下面&#xff0c;我们将以孤岛数据的分布特点为依据对联邦学习进行分类。 考虑有多个数据拥有方&…

0013Java程序设计-springboot教材图文内容审核系统

摘 要目 录第1章 绪论1.1 研究背景与意义1.2 研究内容1.3 论文组成结构 系统实现用户登录模块的实现后台管理系统登录模块的实现投稿信息的实现 开发环境 摘 要 《教材图文内容审核系统》课程案例库研究系统系统主要功能模块包括投稿信息、打卡记录、新闻资讯等&#xff0c;采…

USBCodec芯片的工作原理以及应用

USBCodec芯片通过USB接口从计算机中获取数字音频信号&#xff0c;并将其进行AO3401A采样处理。采样率通常为44.1kHz或48kHz&#xff0c;这是CD音质的标准采样率。高质量的USBCodec芯片还可以支持更高的采样率&#xff0c;例如96kHz或192kHz&#xff0c;以提供更好的音频体验。 …

matlab相机标定求得相机内参

素材下载 可以去官网下载标定板,然后使用我们的相机进行拍照(10~15张即可): 下载请点击这里:here 在拍摄照片之前,先量取对应的每个方格的长度: 如下: 使用MATLAB标定 打开MATLAB的命令行: 输入 cameraCalibrator #调用标定的工具箱 添加的是刚刚我们拍照标定板的…

「2024」预备研究生mem-分析推理强化:多对多画表格(下)

一、分析推理强化&#xff1a;多对多画表格(下) 选修&#xff1a;

入栏需看——学习记忆

记忆方法千千种&#xff0c;本栏意在梳理其中道道来&#xff0c;旦有小得&#xff0c;肥肠幸耶。从不同角度分析学习记忆。 逻辑篇 有逻辑 用思维导图 思维导图记忆有逻辑的文本/内容 理论 巧记书本结构–思维导图 模仿 HCIE-Cloud Computing LAB备考第一步&#xff1a…

Java 日志技术

所以说&#xff0c;要学Logback&#xff01; 配置文件 Logback提供了一个核心配置文件logback.xml&#xff0c;日志框架在记录日志时会读取配置文件中的配置信息&#xff0c;从而记录日志的形式。 可以配置日志输出的位置是文件还是控制台可以配置日志输出的格式还可以配置日…

Vert.x 源码解析(4.x)——Local EvnentBus入门使用和源码解析

Vert.x 源码解析(4.x)——Local EvnentBus入门使用和源码解析 目录 1.简介 Vert.x EventBus是一个分布式事件总线&#xff0c;用于在Vert.x应用程序内或跨多个Vert.x应用程序之间实现异步通信。它允许不同的组件、模块或服务之间通过消息进行交互&#xff0c;从而实现松耦合和…

判断一个点是否在一个多边形内部

如下图所示&#xff0c; 四边形ABCD, P在四边形内部&#xff0c;Q在四边形外部。 通过观察可以发现&#xff0c; 当点在四边形内部时&#xff0c; 如果按顺时针方向的话&#xff0c; 点P在四条边AB&#xff0c; BC, CD, DA的右侧。 当然如果按逆时针的话&#xff0c; 点P在四条…

python—9个基础常识

1. 注释 1&#xff09;单行注释&#xff1a;****# #注释内容print(123) #123print(abc) #abcprint("abc") #abc2&#xff09;多行注释&#xff1a;****‘’’ 或 “”" (1) 第一种注释方式    code  code  ...(2)第二种注释方式 ""&…