最近一直在做NeRF相关的项目,其中LLFF前向数据集,是NeRF常用数据集,本文讲下怎么对NeRF数据进行处理
几个重要的链接地址
- github-llff : GitHub - Fyusion/LLFF: Code release for Local Light Field Fusion at SIGGRAPH 2019
- github-yen: GitHub - yenchenlin/nerf-pytorch: A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.
- github-2020eccv: GitHub - bmild/nerf: Code release for NeRF (Neural Radiance Fields)
LLFF项目了解
这是一个利用预训练好的 模型,来进行render的demo。
demo.sh 的内容如下:
# Use COLMAP to compute 6DoF camera poses python imgs2poses.py data/testscene/ # Create MPIs using pretrained network python imgs2mpis.py \ data/testscene/ \ data/testscene/mpis_360 \ --height 360 # Generate smooth path of poses for new views mkdir data/testscene/outputs/ python imgs2renderpath.py \ data/testscene/ \ data/testscene/outputs/test_path.txt \ --spiral cd cuda_renderer && make && cd .. # Render novel views using input MPIs and poses cuda_renderer/cuda_renderer \ data/testscene/mpis_360 \ data/testscene/outputs/test_path.txt \ data/testscene/outputs/test_vid.mp4 \ 360 .8 18
运行nvidia-docker run --rm --volume /:/host --workdir /host$PWD tf_colmap bash demo.sh
完成后,输出文件如下: