Yarn资源调度器

news2025/1/10 17:37:57

文章目录

    • 一、Yarn资源调度器
      • 1、架构
      • 2、Yarn工作机制
      • 3、HDFS、YARN、MR关系
      • 4、作业提交之HDFS&MapReduce
    • 二、Yarn调度器和调度算法
      • 1、先进先出调度器(FIFO)
      • 2、容量调度器(Capacity Scheduler)
      • 3、公平调度器(Fair Scheduler)
        • 3.1 调度器原理
        • 3.22 资源分配方式
    • 三、修改Yarn集群
      • 1、Yarn配置
      • 2、多队列提交
      • 3、向集群中提交任务


一、Yarn资源调度器

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。

1、架构

YARN主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成。

在这里插入图片描述

2、Yarn工作机制

在这里插入图片描述

  1. MR程序提交到客户端所在的节点。
  2. YarnRunner向ResourceManager申请一个Application。
  3. RM将该应用程序的资源路径返回给YarnRunner。
  4. 该程序将运行所需资源提交到HDFS上。
  5. 程序资源提交完毕后,申请运行mrAppMaster。
  6. RM将用户的请求初始化成一个Task。
  7. 其中一个NodeManager领取到Task任务。
  8. 该NodeManager创建容器Container,并产生MRAppmaster。
  9. Container从HDFS上拷贝资源到本地。
  10. MRAppmaster向RM 申请运行MapTask资源。
  11. RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
  12. MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
  13. MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
  14. ReduceTask向MapTask获取相应分区的数据。程序运行完毕后,MR会向RM申请注销自己。

3、HDFS、YARN、MR关系

在这里插入图片描述

4、作业提交之HDFS&MapReduce

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • (1)作业提交

    • 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
    • 第2步:Client向RM申请一个作业id。
    • 第3步:RM给Client返回该job资源的提交路径和作业id。
    • 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
    • 第5步:Client提交完资源后,向RM申请运行MrAppMaster。
  • (2)作业初始化

    • 第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
    • 第7步:某一个空闲的NM领取到该Job。
    • 第8步:该NM创建Container,并产生MRAppmaster。
    • 第9步:下载Client提交的资源到本地。
  • (3)任务分配

    • 第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
    • 第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
  • (4)任务运行

    • 第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
    • 第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
    • 第14步:ReduceTask向MapTask获取相应分区的数据。
    • 第15步:程序运行完毕后,MR会向RM申请注销自己。
  • (5)进度和状态更新

    • YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。
  • (6)作业完成

    • 除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。

二、Yarn调度器和调度算法

目前,Hadoop作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(Fair Scheduler)。

  • Apache Hadoop3.1.3默认的资源调度器是Capacity Scheduler。

  • CDH框架默认调度器是Fair Scheduler。

详见yarn-default.xml文件

<property>
    <description>The class to use as the resource scheduler.</description>
    <name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>

1、先进先出调度器(FIFO)

FIFO调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。

  • 优点:简单易懂。
  • 缺点:不支持多队列,生产环境很少使用。

在这里插入图片描述

2、容量调度器(Capacity Scheduler)

Capacity Scheduler是Yahoo开发的多用户调度器。

在这里插入图片描述

在这里插入图片描述

3、公平调度器(Fair Scheduler)

3.1 调度器原理

Fair Schedulere是Facebook开发的多用户调度器。

在这里插入图片描述

公平调度器—缺额

  • 公平调度器设计目标是:在时间尺度上,所有作业获得公平的资源。某一时刻一个作业应获资源和实际获取资源的差距叫“缺额”。
  • 调度器会优先为缺额大的作业分配资源

在这里插入图片描述

3.22 资源分配方式

有3种资源分配方式:FIFO策略、 Fair 策略、 DRF策略。

(1)、FIFO策略

公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于上面讲过的容量调度器。

(2)、Fair 策略

Fair 策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资源。这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到1/2的资源;如果三个应用程序同时运行,则每个应用程序可得到1/3的资源。

在这里插入图片描述

在这里插入图片描述

(2)作业资源分配

  • 不加权(关注点是Job的个数):
需求:有一条队列总资源12个, 有4个job,对资源的需求分别是: 
job1->1,  job2->2 , job3->6,  job4->5

第一次算:  12 / 4 = 3 
    job1: 分3 --> 多2个 
    job2: 分3 --> 多1个
    job3: 分3 --> 差3个
    job4: 分3 --> 差2个

第二次算: 3 / 2  = 1.5 
    job1: 分1
    job2: 分2
    job3: 分3 --> 差3个 --> 分1.5 --> 最终: 4.5 
    job4: 分3 --> 差2个 --> 分1.5 --> 最终: 4.5

第n次算: 一直算到没有空闲资源
  • 加权(关注点是Job的权重):
需求:有一条队列总资源16,有4个job 
对资源的需求分别是: 
job1->4   job2->2  job3->10  job4->4 
每个job的权重为:   
job1->5   job2->8  job3->1   job4->2

第一次算: 16 / (5+8+1+2) =  1
    job1:  分5 --> 多1
    job2:  分8 --> 多6
    job3:  分1 --> 少9
    job4:  分2 --> 少2            

第二次算: 7 / (1+2) = 7/3
    job1: 分4
    job2: 分2
    job3: 分1 --> 分7/3(2.33) -->少6.67
    job4: 分2 --> 分14/3(4.66) -->多2.66

第三次算:2.66/1=2.66 
    job1: 分4
    job2: 分2
    job3: 分3.33 --> 分2.66/1 --> 分6
    job4: 分4
第n次算: 一直算到没有空闲资源

(3)、DRF策略

DRF(Dominant Resource Fairness),我们之前说的资源,都是单一标准,例如只考虑内存(也是Yarn默认的情况)。但是很多时候我们资源有很多种,例如内存,CPU,网络带宽等,这样我们很难衡量两个应用应该分配的资源比例。

那么在YARN中,我们用DRF来决定如何调度:假设集群一共有100 CPU和10T 内存,而应用A需要(2 CPU, 300GB),应用B需要(6 CPU,100GB)。则两个应用分别需要A(2%CPU, 3%内存)和B(6%CPU, 1%内存)的资源,这就意味着A是内存主导的, B是CPU主导的,针对这种情况,我们可以选择DRF策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制。

三、修改Yarn集群

1、Yarn配置

资源配置:

  • 从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。

  • 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster。

  • 平均每个节点运行10个 / 3台 ≈ 3个任务(4 3 3)

修改yarn-site.xml配置参数如下

<!-- 选择调度器,默认容量 -->
<property>
	<description>The class to use as the resource scheduler.</description>
	<name>yarn.resourcemanager.scheduler.class</name>
	<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>

<!-- ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台 * 4线程 = 12线程(去除其他应用程序实际不能超过8) -->
<property>
	<description>Number of threads to handle scheduler interface.</description>
	<name>yarn.resourcemanager.scheduler.client.thread-count</name>
	<value>8</value>
</property>


<!--
是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数 
-->
<property>
	<description>Flag to determine if logical processors(such as
	hyperthreads) should be counted as cores. Only applicable on Linux
	when yarn.nodemanager.resource.cpu-vcores is set to -1 and
	yarn.nodemanager.resource.detect-hardware-capabilities is true.
	</description>
	<name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
	<value>false</value>
</property>

<!-- 是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动 -->
<property>
	<description>Enable auto-detection of node capabilities such as
	memory and CPU.
	</description>
	<name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
	<value>false</value>
</property>


<!--
Core转成Vcore的个数(虚拟核数和物理核数乘数,默认是1.0) 
hadoop中的vcore不是真正的core,通常vcore的个数设置为逻辑cpu个数的1~5倍。
-->
<property>
	<description>Multiplier to determine how to convert phyiscal cores to vcores. This value is used if 
yarn.nodemanager.resource.cpu-vcores is set to -1(which implies auto-calculate vcores) and
yarn.nodemanager.resource.detect-hardware-capabilities is set to true. The	number of vcores will be calculated as	number of CPUs * multiplier.
	</description>
	<name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
	<value>1.0</value>
</property>

<!-- NodeManager使用内存数,默认8G,修改为4G内存 -->
<property>
	<description>Amount of physical memory, in MB, that can be allocated 
	for containers. If set to -1 and
	yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
	automatically calculated(in case of Windows and Linux).
	In other cases, the default is 8192MB.
	</description>
	<name>yarn.nodemanager.resource.memory-mb</name>
	<value>4096</value>
</property>

<!-- nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个 -->
<property>
	<description>Number of vcores that can be allocated
	for containers. This is used by the RM scheduler when allocating
	resources for containers. This is not used to limit the number of
	CPUs used by YARN containers. If it is set to -1 and
	yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
	automatically determined from the hardware in case of Windows and Linux.
	In other cases, number of vcores is 8 by default.</description>
	<name>yarn.nodemanager.resource.cpu-vcores</name>
	<value>4</value>
</property>

<!-- 容器最小内存,默认1G -->
<property>
	<description>The minimum allocation for every container request at the RM	in MBs. Memory requests lower than this will be set to the value of this	property. Additionally, a node manager that is configured to have less memory	than this value will be shut down by the resource manager.
	</description>
	<name>yarn.scheduler.minimum-allocation-mb</name>
	<value>1024</value>
</property>

<!-- 容器最大内存,默认8G,修改为2G -->
<property>
	<description>The maximum allocation for every container request at the RM	in MBs. Memory requests higher than this will throw an	InvalidResourceRequestException.
	</description>
	<name>yarn.scheduler.maximum-allocation-mb</name>
	<value>2048</value>
</property>

<!-- 容器最小CPU核数,默认1个 -->
<property>
	<description>The minimum allocation for every container request at the RM	in terms of virtual CPU cores. Requests lower than this will be set to the	value of this property. Additionally, a node manager that is configured to	have fewer virtual cores than this value will be shut down by the resource	manager.
	</description>
	<name>yarn.scheduler.minimum-allocation-vcores</name>
	<value>1</value>
</property>

<!-- 容器最大CPU核数,默认4个,修改为2个 -->
<property>
	<description>The maximum allocation for every container request at the RM	in terms of virtual CPU cores. Requests higher than this will throw an
	InvalidResourceRequestException.</description>
	<name>yarn.scheduler.maximum-allocation-vcores</name>
	<value>2</value>
</property>

<!-- 虚拟内存检查,默认打开,修改为关闭 -->
<property>
	<description>Whether virtual memory limits will be enforced for
	containers.</description>
	<name>yarn.nodemanager.vmem-check-enabled</name>
	<value>false</value>
</property>

<!-- 虚拟内存和物理内存设置比例,默认2.1 -->
<property>
	<description>Ratio between virtual memory to physical memory when	setting memory limits for containers. Container allocations are	expressed in terms of physical memory, and virtual memory usage	is allowed to exceed this allocation by this ratio.
	</description>
	<name>yarn.nodemanager.vmem-pmem-ratio</name>
	<value>2.1</value>
</property>

重启Yarn集群

./sbin/stop-yarn.sh
./sbin/start-yarn.sh

登录页面查看资源修改:http://hadoop102:8088/cluster

在这里插入图片描述

关闭虚拟内存检查

在这里插入图片描述

2、多队列提交

配置参数:

default队列:占总内存的40%,最大资源容量占总资源60%。

hive队列:占总内存的60%,最大资源容量占总资源80%。

修改capacity-scheduler.xml配置

<!-- 指定多队列,增加hive队列 -->
<property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>default,hive</value>
    <description>
      The queues at the this level (root is the root queue).
    </description>
</property>

<!-- 降低default队列资源额定容量为40%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.capacity</name>
    <value>40</value>
</property>

<!-- 降低default队列资源最大容量为60%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
    <value>60</value>
</property>

添加capacity-scheduler.xml配置

<!-- 指定hive队列的资源额定容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.capacity</name>
    <value>60</value>
</property>

<!-- 用户最多可以使用队列多少资源,1表示所有 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
    <value>1</value>
</property>

<!-- 指定hive队列的资源最大容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
    <value>80</value>
</property>

<!-- 启动hive队列 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.state</name>
    <value>RUNNING</value>
</property>

<!-- 哪些用户有权向队列提交作业 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
    <value>*</value>
</property>

<!-- 哪些用户有权操作队列,管理员权限(查看/杀死) -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
    <value>*</value>
</property>

<!-- 哪些用户有权配置提交任务优先级 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
    <value>*</value>
</property>

<!-- 任务的超时时间设置:yarn application -appId appId -updateLifetime Timeout
参考资料:https://blog.cloudera.com/enforcing-application-lifetime-slas-yarn/ -->

<!-- 如果application指定了超时时间,则提交到该队列的application能够指定的最大超时时间不能超过该值。 
-->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
    <value>-1</value>
</property>

<!-- 如果application没指定超时时间,则用default-application-lifetime作为默认值 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
    <value>-1</value>
</property>

分发修改后配置文件,或者修改ResourceManger所在节点配置

重启Yarn集群或者刷新配置

yarn rmadmin -refreshQueues

登录页面查看队列更新:http://hadoop102:8088/cluster/scheduler

在这里插入图片描述

3、向集群中提交任务

package com.example.demo.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WCDriver2 {
    public static void main(String[] args) throws Exception {
        System.out.println(args[0]);
        System.out.println(args[1]);
        //1.创建Job实例
        Configuration conf = new Configuration();//可以设置参数
        conf.set("mapreduce.job.queuename", "hive");
        Job job = Job.getInstance(conf);

        //2.给Job赋值
        //2.1关联本程序的jar---如果是本地运行不用设置。如果是在集群上运行(打jar包放在集群上)一定要设置
        job.setJarByClass(WCDriver2.class);
        //2.2设置Mapper和Reducer类
        job.setMapperClass(WCMapper.class);
        job.setReducerClass(WCReducer.class);
        //2.3设置Mapper输出的Key,value的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        //2.4设置最终输出的key,value的类型(在这是Reducer输出的key,value的类型)
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        //2.5设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //注意:输出的目录必须不存在
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //3.提交Job
        boolean b = job.waitForCompletion(true);
        System.out.println("=======" + b);
    }
}

pom文件打包方式

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.example</groupId>
    <artifactId>demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>demo</name>
    <description>demo</description>
    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.30</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

登录服务器执行脚本

  • demo-0.0.1.jar :运行的jar包,服务器所在全路径
  • com.example.demo.wordcount.WCDriver2 :全类名运行jar包中的哪个类
  • /input :数据的输入路径(HDFS)
  • /output :数据的输出路径(HDFS)
hadoop jar demo-0.0.1.jar com.example.demo.wordcount.WCDriver2 /input /output

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/981847.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

配电室智能运维方案

为提高配电房的智能运维水平&#xff0c;实现智能运维、多端监测、远程控制、用电分析和异常告警等功能&#xff0c;力安科技依托电易云-智慧电力物联网提供了配电室智能运维方案&#xff0c;协助用户监测配电房内的设备运行状态、实现故障实时报警及无人值守&#xff0c;消灭人…

机器学习笔记:node2vec(论文笔记:node2vec: Scalable Feature Learning for Networks)

2016 KDD 1 intro 利用graph上的节点相似性&#xff0c;对这些节点进行embedding 同质性&#xff1a;节点和其周围节点的embedding比较相似 蓝色节点和其周围的节点结构等价性 结构相近的点embedding相近 比如蓝色节点&#xff0c;都处于多个簇的连接处 2 随机游走 2.1 介绍…

vue+antd——table组件实现动态列+表头下拉选择功能——技能提升

Table 表格 展示行列数据。 何时使用 当有大量结构化的数据需要展现时&#xff1b; 当需要对数据进行排序、搜索、分页、自定义操作等复杂行为时。 最近在写vueantd的框架&#xff0c;遇到一个需求&#xff1a;就是要实现table表格的动态列&#xff0c;并且相应的表头要实现下拉…

Python实现SSA智能麻雀搜索算法优化XGBoost回归模型(XGBRegressor算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法&#xff0c;在2020年提出&a…

【34. 在排序数组中查找元素的第一个和最后一个位置】

目录 1.题目解析2.算法思路3.代码实现 1.题目解析 2.算法思路 3.代码实现 class Solution { public:vector<int> searchRange(vector<int>& nums, int target) {if(nums.size()0){return {-1,-1};}vector<int> ret;int left0,rightnums.size()-1;while(…

C++:类和对象(二)

本文主要介绍&#xff1a;构造函数、析构函数、拷贝构造函数、赋值运算符重载、const成员函数、取地址及const取地址操作符重载。 目录 一、类的六个默认成员函数 二、构造函数 1.概念 2.特性 三、析构函数 1.概念 2.特性 四、拷贝构造函数 1.概念 2.特征 五、赋值…

ORB-SLAM2算法15之回环检测线程Loop Closing

文章目录 0 引言1 概述2 回环主函数3 回环检测4 计算Sim3变换5 回环矫正 0 引言 ORB-SLAM2算法7详细了解了System主类和多线程、ORB-SLAM2学习笔记8详细了解了图像特征点提取和描述子的生成、ORB-SLAM2算法9详细了解了图像帧、ORB-SLAM2算法10详细了解了图像关键帧、ORB-SLAM2…

网络通信深入解析:探索TCP/IP模型

http协议访问web 你知道在我们的网页浏览器的地址当中输入url&#xff0c;未必是如何呈现的吗&#xff1f; web浏览器根据地址栏中指定的url&#xff0c;从web服务器获取文件资源&#xff08;resource&#xff09;等信息&#xff0c;从而显示出web页面。web使用HTTP&#xff08…

OSI七层模型简介

七层模型&#xff0c;亦称OSI&#xff08;Open System Interconnection&#xff09;。参考模型是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机或通信系统间互联的标准体系&#xff0c;一般称为OSI参考模型或七层模型 一、OSI参考模型 1、OSI的来源 OSI&am…

多媒体透明屏,在户外广告领域中,有哪些应用展示?

多媒体透明屏是一种新型的显示技术&#xff0c;它能够将图像和视频直接投射到透明的屏幕上&#xff0c;使得观众可以同时看到屏幕后面的实物。 这种技术在广告、展览、商场等场合有着广泛的应用前景。 多媒体透明屏的原理是利用透明显示技术&#xff0c;将图像和视频通过光学…

安防监控/视频汇聚/云存储/AI视频智能算法引擎系统:遛狗检测算法详解

根据最新修订发布的《中华人民共和国动物防疫法》规定&#xff1a;遛狗不栓绳&#xff0c;养狗不办证、未定期接种疫苗等行为都是违法行为。作为一个合格的“铲屎官"出门遛狗一定要牵好狗绳&#xff0c;保护他人和爱犬的安全。但就算法律明文规定&#xff0c;还是有很多人…

刷题笔记18——数组查缺补漏、二分搜索变体

人就是这样的&#xff0c;想来想去&#xff0c;犹豫来犹豫去&#xff0c;觉得自己没有准备好&#xff0c;勇气没攒够&#xff0c;其实只要迈出去了那一步&#xff0c;就会发现其实所有的一切&#xff0c;早就准备好了。——巫哲Q《撒野》 528. 按权重随机选择 轮盘赌 class S…

软件设计师(十)网络与信息安全基础知识

计算机网络是由多台计算机组成的系统&#xff0c;与传统的单机系统、多机系统相比有很大的区别。 一、网络概述 计算机网络是计算机技术与通信技术相结合的产物&#xff0c;它实现了远程通信、远程信息处理和资源共享。 1、计算机网络的概念 计算机网络的定义是利用通信设备…

leetcode687. 最长同值路径(java)

最长同值路径 题目描述DFS 深度遍历代码演示 题目描述 难度 - 中等 LC - 687. 最长同值路径 给定一个二叉树的 root &#xff0c;返回 最长的路径的长度 &#xff0c;这个路径中的 每个节点具有相同值 。 这条路径可以经过也可以不经过根节点。 两个节点之间的路径长度 由它们之…

序列到序列学习(seq2seq)

permute(1,0,2)&#xff0c;将batch_size 放在中间state 最后一个时刻&#xff0c;每个层的输出

基于SSRF漏洞复现引发的CRLF之(session会话固定+XSS)组合拳利用思路

文章目录 前言Redis通信协议RESPSSRF利用HTTP头注入Redis通信协议Getshell引发思考引出CRLF漏洞CRLF概念漏洞危害漏洞检测挖掘技巧修复建议 引出会话固定漏洞漏洞原理漏洞检测漏洞利用漏洞修复 CRLF会话固定漏洞攻击组合实战案例漏洞利用原理 CRLFXSS攻击实战案例 总结 前言 ​…

网络技术学习十三:DNS(域名服务器)

DNS 域名 产生背景 通过IP地址访问目标主机&#xff0c;不便于记忆 通过容易记忆的域名来标识主机位置 域名的树形层次化结构 根域 领级域 主机所处的国家/区域&#xff0c;注册人的性质 二级域 注册人自行创建的名称 主机名 区域内部的主机的名称 由注册人自行创建…

基于语雀编辑器的在线文档编辑与查看

概述 语雀是一个非常优秀的文档和知识库工具&#xff0c;其编辑器更是非常好用&#xff0c;虽无开源版本&#xff0c;但有编译好的可以使用。本文基于语雀编辑器实现在线文档的编辑与文章的预览。 实现效果 实现 参考语雀编辑器官方文档&#xff0c;其实现需要引入以下文件&…

Android 9.0 网络之netd详解

一、DHCP流程 分析netd之前先了解一下网络自动获取IP流程&#xff0c;借鉴下图流程查看代码&#xff1a; &#xff08;1&#xff09;WIFI扫描到可用网络后进行连接&#xff0c;代码路径&#xff1a;\frameworks\opt\net\wifi\service\java\com\android\server\wifi\WifiStateMa…

计算机安全学习笔记(IV):基于角色的访问控制 - RBAC

RBAC(Role-Based Access Control)基于用户在系统中设定的角色而不是用户的身份。一般来说&#xff0c;RBAC模型定义角色为组织中的一项工作职责&#xff0c;RBAC系统给角色而不是给单独的用户分配访问权。用户根据他们的职责被静态地或动态地分配给不同的角色。 RBAC模型间的关…