便捷、快速、稳定、高性能!以 GPU 实例演示 Alibaba Cloud Linux 3 对 AI 生态的支持 | 龙蜥技术

news2024/11/27 12:52:06

编者按:日前,Alibaba Cloud Linux 3 为使 AI 开发体验更高效,提供了一些优化升级,本文为“Alibaba Cloud Linux 3 AI 能力介绍”系列文章预告篇,以 GPU 实例为例,为大家演示 Alibaba Cloud Linux 3 对 AI 生态的支持。接下来还将陆续发布 2 篇系列文章,主要介绍基于 Alinux 的云市场镜像为用户提供开箱即用的 AI 基础软件环境,以及基于 AMD 介绍 AI 能力差异化。敬请期待。更多 Alibaba Cloud Linux 3 信息可前往官网查看:https://www.aliyun.com/product/ecs/alinux

图片

当在 Linux 操作系统上开发人工智能(AI)应用程序时,研发人员可能会遇到一些挑战,这些挑战包括但不限于:

1. GPU 驱动程序:为了在 Linux 系统上使用 NVIDIA GPU 进行训练或推理,需要安装和配置正确的 NVIDIA GPU 驱动程序。由于不同的操作系统和 GPU 型号可能需要不同的驱动程序,因此可能需要一些额外的工作。

2. AI 框架编译:在 Linux 系统上使用 AI 框架进行编程时,需要安装和配置适当的编译器和其他依赖项。这些框架通常需要进行编译,因此需要确保正确安装了编译器和其他依赖项,并正确配置编译器。

3. 软件兼容性:Linux 操作系统支持许多不同的软件和工具,但不同版本和发行版之间可能存在兼容性问题。这可能会导致某些程序无法正常运行或者在某些操作系统上不可用。因此,研发人员需要了解其工作环境的软件兼容性,并进行必要的配置和修改。

4. 性能问题:AI 软件栈是一个异常复杂的系统,通常需要对不同型号的 CPU 和 GPU 进行专业的优化,才能发挥其最佳性能。软硬件协同的性能优化对于 AI 软件栈来说是一个具有挑战性的任务,需要拥有高超的技术水平和专业知识。

阿里云第三代云服务器操作系统 Alibaba Cloud Linux 3(以下简称“Alinux 3”)是基于龙蜥操作系统 Anolis OS 研发的商业版操作系统,为开发人员提供了强大的 AI 开发平台,通过支持龙蜥生态 repo(epao),Alinux 3 实现了对主流的 nvidia GPU 和 CUDA 生态的全面支持,使得 AI 开发更加便捷高效。此外,Alinux 3 还支持主流的 AI 框架 TensorFlow/PyTorch,intel/amd 等不同 CPU 平台对 AI 的优化,还将引入了 modelscope、huggingface 等大模型 SDK 的原生支持,为开发人员提供了丰富的资源和工具。这些支持,使得 Alinux 3 成为了一个完善的 AI 开发平台,解决 AI 开发人员的痛点问题,不用一直折腾环境,让 AI 开发体验更容易更高效。

Alinux 3 为开发人员提供了强大的 AI 开发平台。为了解决以上研发人员可能遇到的挑战,Alinux 3 提供了以下几点优化升级:

1. Alinux 3 通过引入龙蜥生态软件仓库(epao),支持开发者一键安装主流 NVIDIA GPU 驱动以及 CUDA 加速库,节省了开发者需要匹配驱动版本以及手动安装的时间。

2. epao 仓库中还提供了对主流 AI 框架 Tensorflow/PyTorch 的版本支持,同时安装过程中会自动解决 AI 框架的依赖问题,开发者无需进行额外编译,即可搭配系统 Python 环境进行快速开发。

3. Alinux 3 的 AI 能力在提供给开发者之前,所有组件均经过兼容性测试,开发者可以一键安装对应的 AI 能力,免去了环境配置中可能出现的对系统依赖项的修改,提高了使用过程中的稳定性。

4. Alinux 3 针对 Intel/AMD 等不同平台的 CPU 进行了 AI 专门优化,更好地释放硬件的全部性能

5. 为了更快的适应 AIGC 产业的快速迭代,Alinux 3 还将引入对 ModelScope、HuggingFace 等大模型 SDK 的原生支持,为开发人员提供了丰富的资源和工具。

在多维度的优化加持下,使得 Alinux 3 成为一个完善的 AI 开发平台,解决了 AI 开发人员的痛点问题,让 AI 开发体验更容易更高效。

以下以阿里云 GPU 实例为例子,演示 Alinux 3 对 AI 生态的支持:

1、购买 GPU 实例

图片

2、选择 Alinux 3 镜像

图片

3、安装 epao repo 配置

dnf install -y anolis-epao-release

4、安装nvidia GPU driver 

安装 nvidia driver 之前先保证 kernel-devel 已安装,确保 nvidia driver 安装成功。

dnf install -y kernel-devel-$(uname-r)

安装 nvidia driver:

dnf install -y nvidia-driver nvidia-driver-cuda

安装完成后可以通过 nvidia-smi 命令查看 GPU 设备状态。

图片

5、安装 cuda 生态库

dnf install -y cuda

6、 安装 AI 框架 tensorflow/pytorch

当前提供 CPU 版的 tensorflow/pytorch,未来将支持 GPU 版的 AI 框架。

dnf install tensorflow -y
dnf install pytorch -y

安装完成后可通过简单的命令查看是否安装成功:

图片

图片

7、部署模型

使用 Alinux 3 对 AI 的生态支持,可以部署 GPT-2 Large 模型来进行本文续写任务。

安装 Git 以及 Git LFS 方便后续下载模型。

dnf install -y git git-lfs wget

更新 pip,便于后续部署 Python 环境。

python -m pip install --upgrade pip

启用 Git LFS 的支持。

git lfs install

下载 write-with-transformer 项目源码,以及预训练模型。write-with-transformer 项目是一个网页写作 APP,可以使用 GPT-2 大模型对写作内容进行续写。

git clone https://huggingface.co/spaces/merve/write-with-transformer
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/gpt2-large
wget https://huggingface.co/gpt2-large/resolve/main/pytorch_model.bin -O gpt2-large/pytorch_model.bin

安装 write-with-transformer 所需要的依赖环境。

cd ~/write-with-transformer
pip install --ignore-installed pyyaml==5.1
pip install -r requirements.txt

环境部署完毕后,就可以运行网页版 APP,来体验 GPT-2 帮助完成写作的乐趣。目前 GPT-2 只支持使用英文进行文本生成。

cd ~/write-with-transformer
sed -i 's?"gpt2-large"?"../gpt2-large"?g' app.py
sed -i '34s/10/32/;34s/30/120/' app.py
streamlit run app.py --server.port 7860

回显信息出现 External URL: http://<ECS EXTERNAL IP>:7860 表明网页版 APP 运行成功。

图片

“更多龙蜥产品、生态、技术合作可发送邮件至邮箱 secretary@openanolis.org,我们会第一时间与您联系。”

—— 完 ——

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/978149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue + Element UI 前端篇(五):国际化实现

Vue Element UI 实现权限管理系统 前端篇&#xff08;五&#xff09;&#xff1a;国际化实现 国际化支持 1.安装依赖 执行以下命令&#xff0c;安装 i18n 依赖。 yarn add vue-i18n $ yarn add vue-i18n yarn add v1.9.4 warning package-lock.json found. Your project …

数据分析必知的统计知识——区间估计(其四)

4. 区间估计 还以为你被上节课的内容唬住了~终于等到你&#xff0c;还好没放弃&#xff01; 本节我们将说明两个问题&#xff1a;总体均值 μ \mu μ 的区间估计和总体比例 p ˉ \bar{p} pˉ​ 的区间估计。 区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在…

机车整备场数字孪生 | 图扑智慧铁路

机车整备场是铁路运输系统中的重要组成部分&#xff0c;它承担着机车的维修、保养和整备工作&#xff0c;对保障铁路运输的运维和安全起着至关重要的作用。 随着铁路运输的发展、机车技术的不断进步&#xff0c;以及数字化转型的不断推进&#xff0c;数字孪生技术在机车整备场…

【Nginx23】Nginx学习:响应头与Map变量操作

Nginx学习&#xff1a;响应头与Map变量操作 响应头是非常重要的内容&#xff0c;浏览器或者客户端有很多东西可能都是根据响应头来进行判断操作的&#xff0c;比如说最典型的 Content-Type &#xff0c;之前我们也演示过&#xff0c;直接设置一个空的 types 然后指定默认的数据…

OPC UA Tunnel提高了OPC Classic通信的安全性

2023年8月22日&#xff0c;Softing工业自动化推出了dataFEED OPC Suite 5.30版本。该版本增加了两项新功能&#xff1a;OPC UA Tunnel和InfluxDB数据库连接。 &#xff08;OPC UA Tunnel提高了OPC Classic通信的安全性&#xff09; | OPC UA Tunnel——用于提高OPC Classic通信…

日志框架Slf4j作用及其实现原理

目录 1 设计模式门面模式2 slf4j源码解析 1 设计模式门面模式 设计模式之门面模式与装饰器模式详解和应用&#xff1a;https://blog.csdn.net/ZGL_cyy/article/details/129073521 slf4j是门面模式的典型应用&#xff0c;因此在讲slf4j前&#xff0c;我们先简单回顾一下门面模…

前端日期比较大小(超简单版,不需要转换时间戳)

思路&#xff08;把日期转换为Number类型进行比较&#xff09; 效果如图&#xff1a; 第一步&#xff1a;如果获取到的日期是 &#xff1a;"2023-08-03 00:00:00" 用 timesss.split( )[0] // .split( ) 中间有个空格哦 timesss是自己数据的变…

nlp系列(7)实体识别(Bert)pytorch

模型介绍 本项目是使用Bert模型来进行文本的实体识别。 Bert模型介绍可以查看这篇文章&#xff1a;nlp系列&#xff08;2&#xff09;文本分类&#xff08;Bert&#xff09;pytorch_bert文本分类_牧子川的博客-CSDN博客 模型结构 Bert模型的模型结构&#xff1a; 数据介绍 …

解决Android U无法通过adb安装应用(Caller has no access to session -1)的问题

在Android U&#xff08;14&#xff09;上&#xff0c;对通过adb安装应用做了限制。默认的情况下&#xff0c;当执行以下命令的时候 adb install XXX.apk会提示执行异常 Performing Streamed Install adb: failed to install XXX.apk: Exception occurred while executing in…

java面试之ThreadLocal问题

什么是ThreadLocal,它的基本用法是什么 简单来说就是能在多线程中保持变量独立的线程对象 不用Threadlocal多线程访问同一个变量会出现的问题 package com.pxx;/*** Created by Administrator on 2023/9/3.*/ public class Demo1 {private String v1;public String getV1() …

群晖 DS918通过CISCO SG250 LACP 链路聚合效果不佳的问题解决

问题表现 使用的是CISCO交换机打开LACP 链路聚合&#xff0c;且DS918上完成接口聚合并配置为平衡TCP模式后。通过IPREF测速整体网络性能仅能达到300Mbps左右。 问题解决 检查CISCO交换机LAG配置中&#xff0c;针对DS918的接口组是否正确配置了流量配置。请按照如下图所示&#…

易云维®医院后勤管理系统软件利用物联网智能网关帮助实现医院设备实现智能化、信息化管理

近年来&#xff0c;我国医院逐渐意识到医院设备信息化管理的重要性&#xff0c;逐步建立医院后勤管理系统软件&#xff0c;以提高信息化管理水平。该系统是利用数据库技术&#xff0c;为医院的中央空调、洁净空调、电梯、锅炉、医疗设备等建立电子档案&#xff0c;把设备监控、…

Python中的PYTHONPATH

迷途小书童 读完需要 4分钟 速读仅需 2 分钟 大家好&#xff0c;我是迷途小书童&#xff01; 今天来聊聊 PYTHONPATH。 PYTHONPATH 是一个环境变量&#xff0c;它是一个列表&#xff0c;列表的元素是目录&#xff0c;也就是一些文件夹的路径&#xff0c;它告诉 Python 解释器去…

《自然的艺术形态》

艺术是科学的最高形式。《自然的艺术形态》是恩斯特海克尔在19世纪博物学和生物学的最高峰对自然界所作出的最美阐释。透过自然科学巨匠的慧眼&#xff0c;人类能多一个视角&#xff0c;认识栩栩如生的自然万物&#xff0c;其奇美&#xff0c;其壮观&#xff0c;若非建立在自然…

vs+opencv+QT调试程序

2021-09-28vsopencvQT简单的图像处理工程_opencv 用qt还是vs_二两山栀子的博客-CSDN博客 【vsopencvQt搭建简单的图像处理界面】https://www.bilibili.com/video/BV16T411j7XQ?vd_source0aeb782d0b9c2e6b0e0cdea3e2121eba 调试过程一直出现这种问题&#xff0c;后来改DEBUG为…

HDLBits 练习 Always if2 并给出逻辑简化过程

题目 Always if2 在前面的练习中我们使用了简单的逻辑门与一些逻辑门的组合。这些电路都可以作为组合电路的例子。 组合意味着这个电路的输出只是输入的函数&#xff08;数学意义上的&#xff09;。数学上的函数就意味着当你给定一个输入的时候 对应的只会有一个输出。因此有一…

ChatPaper临时升级教程

ChatPaper临时升级教程 文章目录 ChatPaper临时升级教程必要的声明&#xff1a;升级教程&#xff1a; 必要的声明&#xff1a; 最近只能手动发卡了&#xff0c;所以单独写一个手动升级的教程。 先声明一下付费的内容&#xff1a; 500K大概是30篇左右的总结&#xff1b; 200k大…

计算机网络的故事——HTTP首部

HTTP首部 在HTTP协议通信交互中使用的首部字段。不限于RFC2616中定义的47种首部字段&#xff0c;还有Cookie、setCookie和Content-Disposition等 HTTP 首部字段将定义成缓存代理和非缓存代理的行为&#xff0c;分成 2 种类型。端到端首部和逐跳首部

单向链表(c/c++)

链表是一种常见的数据结构&#xff0c;其中运用到了结构体指针&#xff0c;链表可以实现动态存储分配&#xff0c;换而言之&#xff0c;链表是一个功能强大的数组&#xff0c;可以在某个节点定义多种数据类型&#xff0c;可以实现任意的添加&#xff0c;删除&#xff0c;插入节…

通过nginx将https协议反向代理到http协议请求上

通过nginx将https协议反向代理到http协议请求上 1、问题背景2、介绍nginx的反向代理功能及配置https协议3、具体实现3.1 后端服务支持方式3.2 nginx重定向方式 3.3、nginx的反向代理方式4、关于nginx常用模块和指令 1、问题背景 目前一个系统仅支持https协议访问&#xff0c;因…