操作系统(OS)与系统进程

news2024/11/17 15:48:21

操作系统(OS)与系统进程

  • 冯诺依曼体系结构
  • 操作系统(Operator System)
  • 进程
    • 基本概念
    • 进程的描述(PCB)
    • 查看进程
    • 通过系统调用获取进程标示符(PID)
    • 通过系统调用创建进程(fork)
    • 进程状态(初识)

冯诺依曼体系结构

要去了解操作系统,冯诺依曼体系结构是必须掌握的,它决定了计算机最底层最基础的设计思路。

image-20230903203703062

首先,冯诺依曼体系结构由四大部分构成,输入设备,存储器,中央处理器(CPU),输出设备。CPU里又有控制器和运算器两大器件组成。

image-20230903204205899

这里的存储器指的是内存,不考虑缓存情况,这里的**CPU能且只能对内存进行读写**,不能访问外设(输入或输出设备)外设(输入或输出设备)要输入或者输出数据,也只能写入内存或者从内存中读取。一句话,所有设备都只能直接和内存打交道 。

因此,一个程序要运行,必须加载到内存中。原因就是冯诺依曼体系结构设计就决定了必须是这样的。

那么为什么必须是内存,CPU不能直接去外设,例如硬盘中读取数据呢,原因是存储是分级的。

image-20230903204856033

木桶的短板效应很好理解,要考虑到效率问题。

操作系统(Operator System)

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。笼统的理解,操作系统包括内核(进程管理,内存管理,文件管理,驱动管理),其他程序(例如函数库,shell程序等等)。

设计OS的目的 :操作系统本质就是一组软件,负责与底层硬件资源交互。与硬件交互,管理所有的软硬件资源
为用户程序(应用程序)提供一个良好的执行环境

操作系统本质是一款负责管理的软件,管理所有的软硬件资源。

image-20230903210501697

用户是不可能直接管理底层硬件资源的,因为操作系统不相信任何人,要与底层资源交互唯一的方式就是通过系统调用接口,通过操作系统去完成。

在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用。
系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发 。

总结:

操作系统管理硬件方式:先描述,后组织

描述:将要管理的对象的属性用结构体描述整合起来

组织:将一个个的结构体用特定的数据结构进行组织

进程

基本概念

课本概念:程序的一个执行实例,正在执行的程序等。
内核观点:担当分配系统资源(CPU时间,内存)的实体。

image-20230903211633392

简单理解,就是加载到内存中的一个个程序,最简单直观的就是打开任务管理器,就是有很多很多进程。

概念简单理解即可。真正难理解的是进程的各种属性,以及操作系统对进程的管理。

进程的描述(PCB)

一个进程通常有进程信息(PCB)以及它的数据和代码组成。

进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。课本上称之为PCB(process control block),Linux操作系统下的PCB是: task_struct

在Linux中描述进程的结构体叫做task_struct。task_struct是Linux内核的一种数据结构,它会被装载到RAM(内存)里并且包含着进程的信息。

PCB包含的信息:

标示符: 描述本进程的唯一标示符,用来区别其他进程。
状态: 任务状态,退出代码,退出信号等。
优先级: 相对于其他进程的优先级。
程序计数器: 程序中即将被执行的下一条指令的地址。
内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
其他信息

组织进程的方式:可以在内核源代码里找到它。所有运行在系统里的进程都以task_struct链表的形式存在内核里

Linux中是通过双链表的方式将task_struct组织起来的。

image-20230903223325072

查看进程

进程信息都在/proc目录下可以找到,如要获取PID为1的进程信息,你需要查看 /proc/1 这个文件夹

image-20230903212649190

大多数进程信息同样可以使用top和ps这些用户级工具来获取 ,并且是比较推荐的。

例如查看全部进程。

image-20230903212910050

怎么查找一个进程呢。

image-20230903213801291

只需要会查找进程即可。上面一行进程的详细信息需要慢慢来理解。

通过系统调用获取进程标示符(PID)

image-20230903214509446

通过系统调用可以获取自己进程的PID或者PPID,getpid()和getppid()。

image-20230903215353681

通过系统调用创建进程(fork)

fork非常的神奇,它有两个返回值,没错,它是个函数,但是有两个返回值,将子进程的PID返回给父进程,子进程返回直接0。

image-20230904143150246

image-20230903222924321

image-20230903222812313

这次你会发现一个神奇的现象,代码中写的if else结构竟然同时执行了。难道id既是0,又是大于0的数吗。

fork是怎么做到的呢,它究竟做了什么事?

image-20230904192212594

Linux文档中关于fork的描述是这样的:

image-20230903224205835

fork是创建一个有自己PID的子进程,但是**子进程和父进程却是共享一份代码的**。

但是我们的创建子进程的目的是为了让两个进程做不同的事情,所以需要用一定的方法将两者区别开来,所以fork采用了两个返回值的方式,但是一个id如何能表示两个值呢?

在代码执行完毕,最后要return时,父进程和子进程每个都返回一次,这才实现了fork两个返回值。

但是还有一个问题子进程和父进程却是共享一份代码,那么数据也是共享的,问题是如果要对数据做修改怎么办呢?

Linux下给出的解决方式是在子进程想要对数据进行修改的时候,操作系统会阻止,并且为子进程单独开辟一块空间将数据拷贝给子进程,这种技术叫做写时拷贝

进程状态(初识)

image-20230904191519196

为了弄明白正在运行的进程是什么意思,我们需要知道进程的不同状态。一个进程可以有几个状态(在
Linux内核里,进程有时候也叫做任务),下面是Kernel源代码中的定义:

/*
\* The task state array is a strange "bitmap" of
\* reasons to sleep. Thus "running" is zero, and
\* you can test for combinations of others with
\* simple bit tests.
*/
static const char * const task_state_array[] = {
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};

R运行状态(running): 并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。
S睡眠状态(sleeping): 意味着进程在等待事件完成(这里的睡眠有时候也叫做可中断睡眠(interruptible sleep))。

D磁盘休眠状态(Disk sleep)有时候也叫不可中断睡眠状态(uninterruptible sleep),在这个状态的进程通常会等待IO的结束。
T停止状态(stopped): 可以通过发送 SIGSTOP 信号给进程来停止(T)进程。这个被暂停的进程可以通过发送 SIGCONT 信号让进程继续运行。
X死亡状态(dead):这个状态只是一个返回状态,你不会在任务列表里看到这个状态 。

进程状态有很多种,第一次接触进程状态只简单认识三大状态,运行、阻塞、挂起

image-20230904193840354

一个进程要执行要先进到运行队列中排队。

一个进程到CPU上不一定必须等到它执行结束才被拿下去,每一个进程都有时间片,如果时间到了但是没有结束依然会被拿下来到放到后面重新排队,防止一个进程一直占用资源的情况。

image-20230904195020472

而由于后面的进程都在排队,但是还占据资源,为了保证进程既能正常排队,又能节省大量资源,所以只留下PCB来排队,将对应的代码和数据交换到磁盘中,等轮到时再将对应的代码和数据交换过来,中间只有PCB的过程就是一种挂起状态。

image-20230904195554700

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/972490.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安防监控/视频汇聚/云存储/AI智能视频融合平台页面新增地图展示功能

AI智能分析网关包含有20多种算法,包括人脸、人体、车辆、车牌、行为分析、烟火、入侵、聚集、安全帽、反光衣等等,可应用在安全生产、通用园区、智慧食安、智慧城管、智慧煤矿等场景中。将网关硬件结合我们的视频汇聚/安防监控/视频融合平台EasyCVR一起使…

使用Python进行健身手表数据分析

健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。 Fitness Watch数据分析是健…

QT多线程

1.QT4.7以前的版本-----线程处理方式 1. 出现的警告 直接使用从UI—>转到槽,就会出现警告 2. 出现的错误 error: invalid operands of types QTimer* and void (QTimer::*)(QTimer::QPrivateSignal) to binary operator& 错误:无效的操作数类型’QTimer…

【人工智能】—_有信息搜索、最佳优先搜索、贪心搜索、A_搜索

文章目录 【人工智能】— 有信息搜索、最佳优先搜索、贪心搜索、A*搜索无/有信息的搜索Informed Search AlgorithmsBest-first search(最佳优先搜索)Greedy SearchA* Search解释说明A*搜索是代价最优的和完备的对搜索等值线如何理解 【人工智能】— 有信息搜索、最佳优先搜索、…

2023年文旅地产行业研究报告

第一章 行业概况 1.1 定义 文旅地产,作为一个综合性的产业形态,融合了文化、旅游和地产三大元素,是住宅地产的补充和延伸。它不仅包含了文化和旅游的业态,还融入了商业等多元化元素,被誉为地产中的轻奢品。 在核心业…

AVR128单片机 自动售水机

一、系统方案 1、设计使用两个按键分别为S1和S2及一个发光二极管LED。S1为出水控制按键,当S1按下,表示售水机持续出水,继电器(库元件relay)接通,指示灯LED亮。S2为停水控制键,当S2按下&#xff…

Jenkins详解(三)

Jenkins详解(三) 目录 Jenkins详解(三) 1、Jenkins介绍2、Jenkins CI/CD 流程3、部署环境 3.1 环境准备3.2 安装GitLab3.3 初始化GitLab3.4 GitLab中文社区版补丁包安装3.5 修改GitLab配置文件/etc/gitlab/gitlab.rb3.6 在宿主机输入 http://192.168.200.26:88 地址就可以访问了…

Dom-clobbering原理和例题

目录 引入 1.获取标签 2.覆盖 3.多层覆盖 利用Dom-clobbering 1.tostring 2.集合取值 3.层级关系取值 4.三层取值 5.自定义属性 例题 1 2. 3. 引入 分析 引入 先用三个小例子看看dom-clobbering干了什么 1.获取标签 这个例子给img标签分别做了一个id和一个name…

热释电矢量传感器设计

1 概述 使用4个热释电传感器组成一个2X2的矩阵。通过曲线的相位差、 峰峰值等特征量来计算相关信息。本文使用STM32单片机设计、制作了热释电传感器矩阵;使用C#.NET设计了上位机软件。为以上研究做了试验平台。 2 硬件电路设计 2.1 热释电传感器介绍 热释电红外…

CCKS2023:基于企业数仓和大语言模型构建面向场景的智能应用

8月24日-27日,第十七届全国知识图谱与语义计算大会(CCKS 2023)在沈阳召开。大会以“知识图谱赋能通用AI”为主题,探讨知识图谱对通用AI技术的支撑能力,探索知识图谱在跨平台、跨领域等AI任务中的作用和应用途径。 作为…

MAC系统“无法验证开发者”问题

参考:https://blog.csdn.net/suxiang198/article/details/126550955 对于使用MAC电脑的同学而言,许多时候因为使用需要,从第三方源(比如github等)下载工具或软件,而在运行时会受到MAC系统的安全限制,老是弹…

【STM32】学习笔记-SPI通信

SPI通信 SPI通信(Serial Peripheral Interface)是一种同步的串行通信协议,用于在微控制器、传感器、存储器、数字信号处理器等之间进行通信。SPI通信协议需要使用4个线路进行通信:时钟线(SCLK)、主输入/主输出线(MISO)、主输出/主…

深入浅出AXI协议(5)——数据读写结构读写响应结构

目录 一、前言 二、写选通(Write strobes) 三、窄传输(Narrow transfers) 1、示例1 2、示例2 四、字节不变性(Byte invariance) 五、未对齐的传输(Unaligned transfers) 六…

网络版五子棋C++实现

目录 1.项目介绍 2.开发环境 3.核心技术 4.环境搭建 5.WebSocketpp介绍 5.1WebSocketpp是什么 5.2为什么使用WebSocketpp 5.3原理解析: 5.4WebSocketpp主要特性 6.WebSocketpp使用 7.JsonCpp使用 8.MySQL API 9.项目模块设计以及流程图 10.封装日志宏…

基于单片机的太阳能热水器控制器设计

一、项目介绍 随着环保意识的逐渐增强,太阳能热水器作为一种清洁能源应用得越来越广泛。然而,传统的太阳能热水器控制器通常采用机械式或电子式温控器,存在精度低、控制不稳定等问题。为了解决这些问题,本项目基于单片机技术设计…

Qt鼠标点击事件处理:按Escape键退出程序

创建项目 Qt 入门实战教程(目录) 首先,创建一个名称为QtKeyEscape的Qt默认的窗口程序。 参考 :Qt Creator 创建 Qt 默认窗口程序 Qt响应键盘Escape事件 打开Qt Creator >>编辑 >> 项目 >> Headers>> …

服务运营 | MS文章精读:基于强化学习和可穿戴设备的帕金森治疗方案

作者信息:庞硕,李舒湉 编者按 帕金森疾病的治疗是一个备受关注的医疗问题。本文通过患者的可穿戴传感器收集数据,提出了一个基于强化学习的帕金森药物治疗方案。这是第一篇关于可穿戴治疗设备在慢性疾病管理中的应用研究。原文于2023年4月发…

如何在你的Android工程中启用K2编译器?

如何在你的Android工程中启用K2编译器? K2编译器是用于Kotlin代码编译的最新、高效编译器,你现在可以尝试使用了。 Kotlin编译器正在为Kotlin 2.0进行重写,新的编译器实现(代号K2)带来了显著的构建速度改进&#xff…

K210-调用自定义py库

调用自定义py库 导入py库文件调用py库 用过Python的朋友应该知道,Python是支持将自定义py库(或者第三方py库)放到同一个目录下调用的,MicroPython也是支持调用自定义py库的。在调用自定义py库之前,需要提前将py库文件导…

期货基础知识

一、期货是什么?  期货是与现货相对应,并由现货衍生而来。期货通常指期货合约,期货与现货完全不同,现货是实实在在可以交易的货(商品),期货主要不是货,而是以某种大众产品如棉花、大…