【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER

news2024/11/20 9:29:54

文章目录

  • 前言
  • PIECEWISE_JERK_SPEED_OPTIMIZER功能简介
  • PIECEWISE_JERK_SPEED_OPTIMIZER相关配置
  • PIECEWISE_JERK_SPEED_OPTIMIZER流程

前言

在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……Stage::Process的PlanOnReferenceLine函数会依次调用task_list中的TASK,本文将会继续以LaneFollow为例依次介绍其中的TASK部分究竟做了哪些工作。由于个人能力所限,文章可能有纰漏的地方,还请批评斧正。

modules/planning/conf/scenario/lane_follow_config.pb.txt配置文件中,我们可以看到LaneFollow所需要执行的所有task。

stage_config: {
  stage_type: LANE_FOLLOW_DEFAULT_STAGE
  enabled: true
  task_type: LANE_CHANGE_DECIDER
  task_type: PATH_REUSE_DECIDER
  task_type: PATH_LANE_BORROW_DECIDER
  task_type: PATH_BOUNDS_DECIDER
  task_type: PIECEWISE_JERK_PATH_OPTIMIZER
  task_type: PATH_ASSESSMENT_DECIDER
  task_type: PATH_DECIDER
  task_type: RULE_BASED_STOP_DECIDER
  task_type: SPEED_BOUNDS_PRIORI_DECIDER
  task_type: SPEED_HEURISTIC_OPTIMIZER
  task_type: SPEED_DECIDER
  task_type: SPEED_BOUNDS_FINAL_DECIDER
  task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
  # task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
  task_type: RSS_DECIDER

本文将继续介绍LaneFollow的第13个TASK——PIECEWISE_JERK_SPEED_OPTIMIZER

PIECEWISE_JERK_SPEED_OPTIMIZER功能简介

产生平滑速度规划曲线
在这里插入图片描述在这里插入图片描述
根据ST图的可行驶区域,优化出一条平滑的速度曲线。满足一阶导、二阶导平滑(速度加速度平滑);满足道路限速;满足车辆动力学约束。

PIECEWISE_JERK_SPEED_OPTIMIZER相关配置

modules/planning/conf/planning_config.pb.txt

default_task_config: {
  task_type: PIECEWISE_JERK_SPEED_OPTIMIZER
  piecewise_jerk_speed_optimizer_config {
    acc_weight: 1.0
    jerk_weight: 3.0
    kappa_penalty_weight: 2000.0
    ref_s_weight: 10.0
    ref_v_weight: 10.0
  }
}

PIECEWISE_JERK_SPEED_OPTIMIZER流程

动态规划得到的轨迹还比较粗糙,需要用优化的方法对轨迹进行进一步的平滑。基于二次规划的速度规划的方法与路径规划基本一致。

原理可以参考这篇论文:
《Optimal Trajectory Generation for Autonomous Vehicles UnderCentripetal Acceleration Constraints for In-lane Driving Scenarios》

QP问题的标准类型定义:

m i n i m i z e 1 2 ⋅ x T ⋅ H ⋅ x + f T ⋅ x s . t . L B ≤ x ≤ U B A e q x = b e q A x ≤ b minimize \frac{1}{2} \cdot x^T \cdot H \cdot x + f^T \cdot x \\ s.t. LB \leq x \leq UB \\ A_{eq}x = b_{eq} \\ Ax \leq b minimize21xTHx+fTxs.t.LBxUBAeqx=beqAxb

优化变量

在这里插入图片描述

速度规划的坐标系

注意:速度规划的 s s s沿着轨迹的方向,路径规划的 s s s沿着参考线的方向。

在这里插入图片描述优化变量 x x x x x x有三个部分组成:从 s 0 s_0 s0, s 1 s_1 s1, s 2 s_2 s2 s n − 1 s_{n-1} sn1,从 s ˙ 0 \dot s_0 s˙0, s ˙ 1 \dot s_1 s˙1, s ˙ 2 \dot s_2 s˙2 s ˙ n − 1 \dot s_{n-1} s˙n1,从 s ¨ 0 \ddot s_0 s¨0, s ¨ 1 \ddot s_1 s¨1, s ¨ 2 \ddot s_2 s¨2 s ¨ n − 1 \ddot s_{n-1} s¨n1.
x = { s 0 , s 1 , … , s n − 1 , s 0 ˙ , s 1 ˙ , … , s n − 1 ˙ , s 0 ¨ , s 1 ¨ , … , s n − 1 ¨ } x=\{s_0,s_1,\ldots,s_{n-1},\dot{s_0},\dot{s_1},\ldots,\dot{s_{n-1}},\ddot{s_0},\ddot{s_1},\ldots,\ddot{s_{n-1}}\} x={s0,s1,,sn1,s0˙,s1˙,,sn1˙,s0¨,s1¨,,sn1¨}

ps:三阶导的求解方式为: s ′ ′ ′ = s ′ ′ i + 1 − s ′ ′ i Δ t s^{'''}=\frac{{{{s''}_{i + 1}} - {{s''}_i}}}{{\Delta t}} s′′′=Δts′′i+1s′′i

设计目标函数

对于目标函数的设计,我们需要明确以下目标:

  • 尽可能贴合决策时制定的st曲线 ∣ s i − s i − r e f ∣ ↓ \left| {{s_i} - {s_{i - ref}}} \right| \downarrow sisiref
  • 确保舒适的体感,尽可能降低加速度/加加速度 ∣ s ¨ i + 1 ∣ ↓ \left| {{{\ddot s}_{i + 1}}} \right| \downarrow s¨i+1 ∣ s ′ ′ ′ i → i + 1 ∣ ↓ \left| {{{s'''}_{i \to i + 1}}} \right| \downarrow s′′′ii+1
  • 尽可能按照巡航速度行驶 ∣ s ˙ i − v r e f ∣ ↓ \left| {{{\dot s}_i} - {v_{ref}}} \right| \downarrow s˙ivref
  • 在转弯时减速行驶, 曲率越大,速度越小,减小向心加速度 ∣ s ˙ i 2 κ s i ∣ ↓ \left| \dot{s}_i^2\kappa_{s_i} \right| \downarrow s˙i2κsi
  • 末端惩罚项,使末端 s , v , a s,v,a s,v,a趋于预期

最后会得到以下目标函数:
m i n f = ∑ i = 0 n − 1 w s ( s i − s i − r e f ) 2 + w v ( s ˙ i − v r e f ) 2 + w i s ˙ i 2 κ s i + w a s ¨ i 2 + ∑ i = 0 n − 2 w j s ′ ′ ′ i → i + 1 2 + w e n d − s ( s n − 1 − s e n d ) 2 + w e n d − d s ( s n − 1 ˙ − s e n d ˙ ) 2 + w e n d − d d s ( s n − 1 ¨ − s e n d ¨ ) 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_s(s_i-s_{i-ref})^2+w_v(\dot{s}_i-v_{ref})^2+w_i\dot{s}_i^2\kappa_{s_i}+w_a\ddot{s}_i^2+\sum_{i=0}^{n-2}w_j{s^{'''}}_{i \to i + 1}^2\\ & +w_{end-s}(s_{n-1}-s_{end})^2+w_{end-ds}(\dot{s_{n-1}}-\dot{s_{end}})^2+w_{end-dds}(\ddot{s_{n-1}}-\ddot{s_{end}})^2 \end{aligned} minf=i=0n1ws(sisiref)2+wv(s˙ivref)2+wis˙i2κsi+was¨i2+i=0n2wjs′′′ii+12+wends(sn1send)2+wendds(sn1˙send˙)2+wenddds(sn1¨send¨)2

w s w_s ws——位置的权重
w v w_v wv——速度的权重
w i w_i wi——曲率的权重
w a w_a wa——加速度的权重
w j w_j wj——加加速度的权重

为了统一格式,方便与代码对照,在此对目标函数进行变换:
m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s i − r e f ) 2 + w d s − r e f ( s ˙ i − s ˙ r e f ) 2 + p i s ˙ i 2 + w d d s s ¨ i 2 + ∑ i = 0 n − 2 w d d d s s ′ ′ ′ i → i + 1 2 + w e n d − s ( s n − 1 − s e n d ) 2 + w e n d − d s ( s n − 1 ˙ − s e n d ˙ ) 2 + w e n d − d d s ( s n − 1 ¨ − s e n d ¨ ) 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_{i-ref})^2+w_{ds-ref}(\dot{s}_i-\dot s_{ref})^2+p_i\dot{s}_i^2+w_{dds}\ddot{s}_i^2+\sum_{\color{red}i=0}^{\color{red}n-2}w_{ddds}{s^{'''}}_{i \to i + 1}^2\\ & +w_{end-s}(s_{n-1}-s_{end})^2+w_{end-ds}(\dot{s_{n-1}}-\dot{s_{end}})^2+w_{end-dds}(\ddot{s_{n-1}}-\ddot{s_{end}})^2 \end{aligned} minf=i=0n1wsref(sisiref)2+wdsref(s˙is˙ref)2+pis˙i2+wddss¨i2+i=0n2wdddss′′′ii+12+wends(sn1send)2+wendds(sn1˙send˙)2+wenddds(sn1¨send¨)2

注: p i p_i pi代表penalty,为曲率 κ \kappa κ与曲率的权重 w i w_i wi的乘积。

接着,对目标函数按阶次整理可得:
m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s i − r e f ) 2 + w e n d − s ( s n − 1 − s e n d ) 2 + ∑ i = 0 n − 1 w d s − r e f ( s ˙ i − s ˙ r e f ) 2 + p i s ˙ i 2 + w e n d − d s ( s n − 1 ˙ − s e n d ˙ ) 2 + ∑ i = 0 n − 1 w d d s s ¨ i 2 + w e n d − d d s ( s n − 1 ¨ − s e n d ¨ ) 2 + ∑ i = 0 n − 2 w d d d s s ′ ′ ′ i → i + 1 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_{i-ref})^2+w_{end-s}(s_{n-1}-s_{end})^2\\ &+\sum_{i=0}^{n-1}w_{ds-ref}(\dot{s}_i-\dot s_{ref})^2+p_i\dot{s}_i^2+w_{end-ds}(\dot{s_{n-1}}-\dot{s_{end}})^2\\ &+\sum_{i=0}^{n-1}w_{dds}\ddot{s}_i^2+w_{end-dds}(\ddot{s_{n-1}}-\ddot{s_{end}})^2\\ &+\sum_{\color{red}i=0}^{\color{red}n-2}w_{ddds}{s^{'''}}_{i \to i + 1}^2 \end{aligned} minf=i=0n1wsref(sisiref)2+wends(sn1send)2+i=0n1wdsref(s˙is˙ref)2+pis˙i2+wendds(sn1˙send˙)2+i=0n1wddss¨i2+wenddds(sn1¨send¨)2+i=0n2wdddss′′′ii+12

s ′ ′ ′ = s ′ ′ i + 1 − s ′ ′ i Δ t s^{'''}=\frac{{{{s''}_{i + 1}} - {{s''}_i}}}{{\Delta t}} s′′′=Δts′′i+1s′′i代入目标函数,
∑ i = 0 n − 2 ( s i ′ ′ ′ ) 2 = ( s 1 ′ ′ − s 0 ′ ′ Δ t ) 2 + ( s 2 ′ ′ − s 1 ′ ′ Δ t ) 2 + ⋯ + ( s n − 2 ′ ′ − s n − 3 ′ ′ Δ t ) 2 + ( s n − 1 ′ ′ − s n − 2 ′ ′ Δ t ) 2 = ( s 0 ′ ′ ) 2 Δ t 2 + 2 ⋅ ∑ i = 1 n − 2 ( s i ′ ′ ) 2 Δ t 2 + ( s n − 1 ′ ′ ) 2 Δ t 2 − 2 ⋅ ∑ i = 0 n − 2 s i ′ ′ ⋅ s i + 1 ′ ′ Δ t 2 \begin{aligned} \sum_{\color{red}{i=0}}^{\color{red}{n-2}}(s_i^{\prime\prime\prime})^2& =\left(\frac{s_{1}^{\prime\prime}-s_{0}^{\prime\prime}}{\Delta t}\right)^2+\left(\frac{s_{2}^{\prime\prime}-s_{1}^{\prime\prime}}{\Delta t}\right)^2+\cdots+\left(\frac{s_{n-2}^{\prime\prime}-s_{n-3}^{\prime\prime}}{\Delta t}\right)^2+\left(\frac{s_{n-1}^{\prime\prime}-s_{n-2}^{\prime\prime}}{\Delta t}\right)^2 \\ &=\frac{\left(s_0^{\prime\prime}\right)^2}{\Delta t^2}+{2}\cdot\sum_{\color{red}i=1}^{\color{red}n-2}\frac{\left(s_i^{\prime\prime}\right)^2}{\Delta t^2}+\frac{\left(s_{n-1}^{\prime\prime}\right)^2}{\Delta t^2}-{2}\cdot\sum_{\color{red}i=0}^{\color{red}n-2}\frac{s_i^{\prime\prime}\cdot s_{i+1}^{\prime\prime}}{\Delta t^2} \end{aligned} i=0n2(si′′′)2=(Δts1′′s0′′)2+(Δts2′′s1′′)2++(Δtsn2′′sn3′′)2+(Δtsn1′′sn2′′)2=Δt2(s0′′)2+2i=1n2Δt2(si′′)2+Δt2(sn1′′)22i=0n2Δt2si′′si+1′′

m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s i − r e f ) 2 + w e n d − s ( s n − 1 − s e n d ) 2 + ∑ i = 0 n − 1 w d s − r e f ( s ˙ i − s ˙ r e f ) 2 + p i s ˙ i 2 + w e n d − d s ( s n − 1 ˙ − s e n d ˙ ) 2 + ∑ i = 0 n − 1 w d d s s ¨ i 2 + w e n d − d d s ( s n − 1 ¨ − s e n d ¨ ) 2 + w d d d s [ ( s 0 ′ ′ ) 2 Δ t 2 + 2 ⋅ ∑ i = 1 n − 2 ( s i ′ ′ ) 2 Δ t 2 + ( s n − 1 ′ ′ ) 2 Δ t 2 − 2 ⋅ ∑ i = 0 n − 2 s i ′ ′ ⋅ s i + 1 ′ ′ Δ t 2 ] \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_{i-ref})^2+w_{end-s}(s_{n-1}-s_{end})^2\\ &+\sum_{i=0}^{n-1}w_{ds-ref}(\dot{s}_i-\dot s_{ref})^2+p_i\dot{s}_i^2+w_{end-ds}(\dot{s_{n-1}}-\dot{s_{end}})^2\\ &+\sum_{i=0}^{n-1}w_{dds}\ddot{s}_i^2+w_{end-dds}(\ddot{s_{n-1}}-\ddot{s_{end}})^2\\ &+w_{ddds}[\frac{\left(s_0^{\prime\prime}\right)^2}{\Delta t^2}+{2}\cdot\sum_{\color{red}i=1}^{\color{red}n-2}\frac{\left(s_i^{\prime\prime}\right)^2}{\Delta t^2}+\frac{\left(s_{n-1}^{\prime\prime}\right)^2}{\Delta t^2}-{2}\cdot\sum_{\color{red}i=0}^{\color{red}n-2}\frac{s_i^{\prime\prime}\cdot s_{i+1}^{\prime\prime}}{\Delta t^2}] \end{aligned} minf=i=0n1wsref(sisiref)2+wends(sn1send)2+i=0n1wdsref(s˙is˙ref)2+pis˙i2+wendds(sn1˙send˙)2+i=0n1wddss¨i2+wenddds(sn1¨send¨)2+wddds[Δt2(s0′′)2+2i=1n2Δt2(si′′)2+Δt2(sn1′′)22i=0n2Δt2si′′si+1′′]

约束条件

接下来谈谈约束的设计。
要满足的约束条件
主车必须在道路边界内,同时不能和障碍物有碰撞 s i ∈ ( s min ⁡ i , s max ⁡ i ) {s_i} \in (s_{\min }^i,s_{\max }^i) si(smini,smaxi)根据当前状态,主车的横向速度/加速度/加加速度有特定运动学限制
s i ′ ∈ ( s m i n i ′ ( t ) , s m a x i ′ ( t ) ) , s i ′ ′ ∈ ( s m i n i ′ ′ ( t ) , s m a x i ′ ′ ( t ) ) , s i ′ ′ ′ ∈ ( s m i n i ′ ′ ′ ( t ) , s m a x i ′ ′ ′ ( t ) ) s_{i}^{\prime}\in\left(s_{min}^{i}{}^{\prime}(t),s_{max}^{i}{}^{\prime}(t)\right)\text{,}s_{i}^{\prime\prime}\in\left(s_{min}^{i}{}^{\prime\prime}(t),s_{max}^{i}{}^{\prime\prime}(t)\right)\text{,}s_{i}^{\prime\prime\prime}\in\left(s_{min}^{i}{}^{\prime\prime\prime}(t),s_{max}^{i}{}^{\prime\prime\prime}(t)\right) si(smini(t),smaxi(t)),si′′(smini′′(t),smaxi′′(t)),si′′′(smini′′′(t),smaxi′′′(t))
连续性约束
s i + 1 ′ ′ = s i ′ ′ + ∫ 0 Δ t s i → i + 1 ′ ′ ′ d t = s i ′ ′ + s i → i + 1 ′ ′ ′ ∗ Δ t s i + 1 ′ = s i ′ + ∫ 0 Δ t s ′ ′ ( t ) d t = s i ′ + s i ′ ′ ∗ Δ t + 1 2 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 2 = s i ′ + 1 2 ∗ s i ′ ′ ∗ Δ t + 1 2 ∗ s i + 1 ′ ′ ∗ Δ t s i + 1 = s i + ∫ 0 Δ t s ′ ( t ) d t = s i + s i ′ ∗ Δ t + 1 2 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 3 = s i + s i ′ ∗ Δ t + 1 3 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i + 1 ′ ′ ∗ Δ t 2 \begin{aligned} s_{i+1}^{\prime\prime} &=s_i''+\int_0^{\Delta t}s_{i\to i+1}^{\prime\prime\prime}dt=s_i''+s_{i\to i+1}^{\prime\prime\prime}*\Delta t \\ s_{i+1}^{\prime} &=s_i^{\prime}+\int_0^{\Delta t}\boldsymbol{s''}(t)dt=s_i^{\prime}+s_i^{\prime\prime}*\Delta t+\frac12*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^2 \\ &= s_i^{\prime}+\frac12*s_i^{\prime\prime}*\Delta t+\frac12*s_{i+1}^{\prime\prime}*\Delta t\\ s_{i+1} &=s_i+\int_0^{\Delta t}\boldsymbol{s'}(t)dt \\ &=s_i+s_i^{\prime}*\Delta t+\frac12*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^3\\ &=s_i+s_i^{\prime}*\Delta t+\frac13*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i+1}^{\prime\prime}*\Delta t^2 \end{aligned} si+1′′si+1si+1=si′′+0Δtsii+1′′′dt=si′′+sii+1′′′Δt=si+0Δts′′(t)dt=si+si′′Δt+21sii+1′′′Δt2=si+21si′′Δt+21si+1′′Δt=si+0Δts(t)dt=si+siΔt+21si′′Δt2+61sii+1′′′Δt3=si+siΔt+31si′′Δt2+61si+1′′Δt2

起点约束 s 0 = s i n i t s_0=s_{init} s0=sinit, s ˙ 0 = s i n i t \dot s_0=s_{init} s˙0=sinit, s ¨ 0 = s i n i t \ddot s_0=s_{init} s¨0=sinit满足的是起点的约束,即为实际车辆规划起点的状态。

可以看到和路径规划部分的约束条件基本一致,因此在约束矩阵 A A A部分,路径规划和速度规划矩阵一致,不用再次编写。


相关矩阵

回到代码中,PiecewiseJerkSpeedOptimizer的主流程依旧在Process中,我们暂且不关注其他细节,先关注与二次规划主体部分。

以下代码创建了一个类为PiecewiseJerkSpeedProblem的对象piecewise_jerk_problemPiecewiseJerkSpeedProblem继承自PiecewiseJerkProblem。其中参数意义如下:
num_of_knots:表示采样点的数量。
delta_t:表示每个采样点之间的时间间隔。
init_s:表示起点位置。

  // 分段加加速度速度优化算法
  PiecewiseJerkSpeedProblem piecewise_jerk_problem(num_of_knots, delta_t,
                                                   init_s);

接着看下一段代码:
通过调用Optimize,进行二次规划问题的解决

  // Solve the problem
  if (!piecewise_jerk_problem.Optimize()) {
    const std::string msg = "Piecewise jerk speed optimizer failed!";
    AERROR << msg;
    speed_data->clear();
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }

Optimize这部分代码和路径规划部分一致,具体可参考【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER

速度规划部分约束矩阵 A A A, u p p e r b o u n d upperbound upperbound, l o w e r b o u n d lowerbound lowerbound均和路径规划部分一致:
l b = [ s l b [ 0 ] ⋮ s l b [ n − 1 ] s ′ l b [ 0 ] ⋮ s ′ l b [ n − 1 ] s ′ ′ l b [ 0 ] ⋮ s ′ ′ l b [ n − 1 ] s ′ ′ ′ l b [ 0 ] ⋅ Δ t ⋮ s ′ ′ ′ l b [ n − 2 ] ⋅ Δ t 0 ⋮ 0 s i n i t s ′ i n i t s ′ ′ i n i t ] , u b = [ s u b [ 0 ] ⋮ s u b [ n − 1 ] s ′ u b [ 0 ] ⋮ s ′ u b [ n − 1 ] s ′ ′ u b [ 0 ] ⋮ s ′ ′ u b [ n − 1 ] s ′ ′ ′ u b [ 0 ] ⋅ Δ t ⋮ s ′ ′ ′ u b [ n − 2 ] ⋅ Δ t 0 ⋮ 0 s i n i t s ′ i n i t s ′ ′ i n i t ] lb = \left[ {\begin{array}{ccccccccccccccc}{{s_{lb}}[0]}\\ \vdots \\{{s_{lb}}[n - 1]}\\{{{s'}_{lb}}[0]}\\ \vdots \\{{{s'}_{lb}}[n - 1]}\\{{{s''}_{lb}}[0]}\\ \vdots \\{{{s''}_{lb}}[n - 1]}\\{{{s'''}_{lb}}[0] \cdot \Delta t}\\ \vdots \\{{{s'''}_{lb}}[n - 2] \cdot \Delta t}\\0\\ \vdots \\0\\{{s_{init}}}\\{{{s'}_{init}}}\\{{{s''}_{init}}}\end{array}} \right],ub = \left[ {\begin{array}{ccccccccccccccc}{{s_{ub}}[0]}\\ \vdots \\{{s_{ub}}[n - 1]}\\{{{s'}_{ub}}[0]}\\ \vdots \\{{{s'}_{ub}}[n - 1]}\\{{{s''}_{ub}}[0]}\\ \vdots \\{{{s''}_{ub}}[n - 1]}\\{{{s'''}_{ub}}[0] \cdot \Delta t}\\ \vdots \\{{{s'''}_{ub}}[n - 2] \cdot \Delta t}\\0\\ \vdots \\0\\{{s_{init}}}\\{{{s'}_{init}}}\\{{{s''}_{init}}}\end{array}} \right] lb= slb[0]slb[n1]slb[0]slb[n1]s′′lb[0]s′′lb[n1]s′′′lb[0]Δts′′′lb[n2]Δt00sinitsinits′′init ,ub= sub[0]sub[n1]sub[0]sub[n1]s′′ub[0]s′′ub[n1]s′′′ub[0]Δts′′′ub[n2]Δt00sinitsinits′′init

A = [ 1 0 ⋯ 0 0 ⋱ ⋮ ⋮ ⋱ 0 0 ⋯ 0 1 1 0 ⋯ 0 0 ⋱ ⋮ ⋮ ⋱ 0 0 ⋯ 0 1 1 0 ⋯ 0 0 ⋱ ⋮ ⋮ ⋱ 0 0 ⋯ 0 1 − 1 1 ⋱ ⋱ − 1 1 − 1 1 ⋱ ⋱ − 1 1 − Δ t 2 − Δ t 2 ⋱ ⋱ − Δ t 2 − Δ t 2 − 1 1 ⋱ ⋱ − 1 1 − Δ t ⋱ − Δ t − Δ t 2 3 − Δ t 2 6 ⋱ ⋱ − Δ t 2 3 − Δ t 2 6 1 1 1 ] A = \left[ {\begin{array}{ccccccccccccccc}{\begin{array}{ccccccccccccccc}1&0& \cdots &0\\0& \ddots &{}& \vdots \\ \vdots &{}& \ddots &0\\0& \cdots &0&1\end{array}}&{}&{}\\{}&{\begin{array}{ccccccccccccccc}1&0& \cdots &0\\0& \ddots &{}& \vdots \\ \vdots &{}& \ddots &0\\0& \cdots &0&1\end{array}}&{}\\{}&{}&{\begin{array}{ccccccccccccccc}1&0& \cdots &0\\0& \ddots &{}& \vdots \\ \vdots &{}& \ddots &0\\0& \cdots &0&1\end{array}}\\{}&{}&{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}\\{}&{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}&{\begin{array}{ccccccccccccccc}{ - \frac{{\Delta t}}{2}}&{ - \frac{{\Delta t}}{2}}&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - \frac{{\Delta t}}{2}}&{ - \frac{{\Delta t}}{2}}\end{array}}\\{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}&{\begin{array}{ccccccccccccccc}{ - \Delta t}&{}&{}&{}\\{}& \ddots &{}&{}\\{}&{}&{ - \Delta t}&{}\end{array}}&{\begin{array}{ccccccccccccccc}{ - \frac{{\Delta {t^2}}}{3}}&{ - \frac{{\Delta {t^2}}}{6}}&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - \frac{{\Delta {t^2}}}{3}}&{ - \frac{{\Delta {t^2}}}{6}}\end{array}}\\{\begin{array}{ccccccccccccccc}1&{}&{}&{}\\{}&{}&{}&{}\\{}&{}&{}&{}\end{array}}&{\begin{array}{ccccccccccccccc}{}&{}&{}&{}\\1&{}&{}&{}\\{}&{}&{}&{}\end{array}}&{\begin{array}{ccccccccccccccc}{}&{}&{}&{}\\{}&{}&{}&{}\\1&{}&{}&{}\end{array}}\end{array}} \right] A= 1000000111111100000011111ΔtΔt11000000111112Δt2Δt2Δt2Δt3Δt26Δt23Δt26Δt21

不同之处在于二次项系数矩阵 H H H与一次项系数向量 q q q

二次项系数矩阵 H H H

H = 2 ⋅ [ w s − r e f 0 ⋯ 0 0 ⋱ ⋮ ⋮ w s − r e f 0 0 ⋯ 0 w s − r e f + w e n d − s w d s − r e f + p 0 0 ⋯ 0 0 ⋱ ⋮ ⋮ w d s − r e f + p n − 2 0 0 ⋯ 0 w d s − r e f + p n − 1 + w e n d − s w d d s + w d d d s Δ t 2 0 ⋯ ⋯ 0 − 2 ⋅ w d d d s Δ t 2 w d d s + 2 ⋅ w d d d s Δ t 2 ⋮ 0 − 2 ⋅ w d d d s Δ t 2 ⋱ ⋮ ⋮ ⋱ w d d s + 2 ⋅ w d d d s Δ t 2 0 0 ⋯ 0 − 2 ⋅ w d d d s Δ t 2 w d d s + w d d d s Δ t 2 + w e n d − d d s ] H = 2 \cdot \left[ {\begin{array}{ccccccccccccccc}{\begin{array}{ccccccccccccccc}{{w_{s - ref}}}&0& \cdots &0\\0& \ddots &{}& \vdots \\ \vdots &{}&{{w_{s - ref}}}&0\\0& \cdots &0&{{w_{s - ref}} + {w_{end - s}}}\end{array}}&{}&{}\\{}&{\begin{array}{ccccccccccccccc}{{w_{ds - ref}} + {p_0}}&0& \cdots &0\\0& \ddots &{}& \vdots \\ \vdots &{}&{{w_{ds - ref}} + {p_{n - 2}}}&0\\0& \cdots &0&{{w_{ds - ref}} + {p_{n - 1}} + {w_{end - s}}}\end{array}}&{}\\{}&{}&{\begin{array}{ccccccccccccccc}{{w_{dds}} + \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}&0& \cdots & \cdots &0\\{ - 2 \cdot \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}&{{w_{dds}} + 2 \cdot \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}&{}&{}& \vdots \\0&{ - 2 \cdot \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}& \ddots &{}& \vdots \\ \vdots &{}& \ddots &{{w_{dds}} + 2 \cdot \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}&0\\0& \cdots &0&{ - 2 \cdot \frac{{{w_{ddds}}}}{{\Delta {t^2}}}}&{{w_{dds}} + \frac{{{w_{ddds}}}}{{\Delta {t^2}}} + {w_{end - dds}}}\end{array}}\end{array}} \right] H=2 wsref000wsref000wsref+wendswdsref+p0000wdsref+pn2000wdsref+pn1+wendswdds+Δt2wddds2Δt2wddds000wdds+2Δt2wddds2Δt2wddds0wdds+2Δt2wddds2Δt2wddds00wdds+Δt2wddds+wenddds

void PiecewiseJerkSpeedProblem::CalculateKernel(std::vector<c_float>* P_data,
                                                std::vector<c_int>* P_indices,
                                                std::vector<c_int>* P_indptr) {
  const int n = static_cast<int>(num_of_knots_);
  const int kNumParam = 3 * n;
  const int kNumValue = 4 * n - 1;
  std::vector<std::vector<std::pair<c_int, c_float>>> columns;
  columns.resize(kNumParam);
  int value_index = 0;

  // x(i)^2 * w_x_ref
  for (int i = 0; i < n - 1; ++i) {
    columns[i].emplace_back(
        i, weight_x_ref_ / (scale_factor_[0] * scale_factor_[0]));
    ++value_index;
  }
  // x(n-1)^2 * (w_x_ref + w_end_x)
  columns[n - 1].emplace_back(n - 1, (weight_x_ref_ + weight_end_state_[0]) /
                                         (scale_factor_[0] * scale_factor_[0]));
  ++value_index;

  // x(i)'^2 * (w_dx_ref + penalty_dx)
  for (int i = 0; i < n - 1; ++i) {
    columns[n + i].emplace_back(n + i,
                                (weight_dx_ref_ + penalty_dx_[i]) /
                                    (scale_factor_[1] * scale_factor_[1]));
    ++value_index;
  }
  // x(n-1)'^2 * (w_dx_ref + penalty_dx + w_end_dx)
  columns[2 * n - 1].emplace_back(
      2 * n - 1, (weight_dx_ref_ + penalty_dx_[n - 1] + weight_end_state_[1]) /
                     (scale_factor_[1] * scale_factor_[1]));
  ++value_index;

  auto delta_s_square = delta_s_ * delta_s_;
  // x(i)''^2 * (w_ddx + 2 * w_dddx / delta_s^2)
  columns[2 * n].emplace_back(2 * n,
                              (weight_ddx_ + weight_dddx_ / delta_s_square) /
                                  (scale_factor_[2] * scale_factor_[2]));
  ++value_index;

  for (int i = 1; i < n - 1; ++i) {
    columns[2 * n + i].emplace_back(
        2 * n + i, (weight_ddx_ + 2.0 * weight_dddx_ / delta_s_square) /
                       (scale_factor_[2] * scale_factor_[2]));
    ++value_index;
  }

  columns[3 * n - 1].emplace_back(
      3 * n - 1,
      (weight_ddx_ + weight_dddx_ / delta_s_square + weight_end_state_[2]) /
          (scale_factor_[2] * scale_factor_[2]));
  ++value_index;

  // -2 * w_dddx / delta_s^2 * x(i)'' * x(i + 1)''
  for (int i = 0; i < n - 1; ++i) {
    columns[2 * n + i].emplace_back(2 * n + i + 1,
                                    -2.0 * weight_dddx_ / delta_s_square /
                                        (scale_factor_[2] * scale_factor_[2]));
    ++value_index;
  }

  CHECK_EQ(value_index, kNumValue);

  int ind_p = 0;
  for (int i = 0; i < kNumParam; ++i) {
    P_indptr->push_back(ind_p);
    for (const auto& row_data_pair : columns[i]) {
      P_data->push_back(row_data_pair.second * 2.0);
      P_indices->push_back(row_data_pair.first);
      ++ind_p;
    }
  }
  P_indptr->push_back(ind_p);
}

一次项系数向量 q q q

q = [ − 2 ⋅ w s − r e f ⋅ s 0 − r e f ⋮ − 2 ⋅ w s − r e f ⋅ s ( n − 2 ) − r e f − 2 ⋅ w s − r e f ⋅ s ( n − 1 ) − r e f − 2 ⋅ w e n d − s ⋅ s e n d − 2 ⋅ w d s − r e f ⋅ s ˙ r e f ⋮ − 2 ⋅ w d s − r e f ⋅ s ˙ r e f − 2 ⋅ w e n d − d s ⋅ s ¨ e n d − 2 ⋅ w d s − r e f ⋅ s ˙ r e f 0 ⋮ 0 − 2 ⋅ w e n d − d d s ⋅ s ¨ e n d ] q = \left[ {\begin{array}{ccccccccccccccc}{ - 2 \cdot {w_{s - ref}} \cdot {s_{0 - ref}}}\\ \vdots \\{ - 2 \cdot {w_{s - ref}} \cdot {s_{(n - 2) - ref}}}\\{ - 2 \cdot {w_{s - ref}} \cdot {s_{(n - 1) - ref}} - {\rm{2}} \cdot {w_{end - s}} \cdot {s_{end }}}\\- 2 \cdot {w_{ds - ref}} \cdot {\dot s_{ref}}\\ \vdots \\- 2 \cdot {w_{ds - ref}} \cdot {\dot s_{ref}}\\{ - {\rm{2}} \cdot {w_{end - ds}} \cdot {\ddot s_{end}}}- 2 \cdot {w_{ds - ref}} \cdot {\dot s_{ref}}\\0\\ \vdots \\0\\{ - {\rm{2}} \cdot {w_{end - dds}} \cdot {\ddot s_{end }}}\end{array}} \right] q= 2wsrefs0ref2wsrefs(n2)ref2wsrefs(n1)ref2wendssend2wdsrefs˙ref2wdsrefs˙ref2wenddss¨end2wdsrefs˙ref002wendddss¨end

void PiecewiseJerkSpeedProblem::CalculateOffset(std::vector<c_float>* q) {
  CHECK_NOTNULL(q);
  const int n = static_cast<int>(num_of_knots_);
  const int kNumParam = 3 * n;
  q->resize(kNumParam);
  for (int i = 0; i < n; ++i) {
    if (has_x_ref_) {
      q->at(i) += -2.0 * weight_x_ref_ * x_ref_[i] / scale_factor_[0];
    }
    if (has_dx_ref_) {
      q->at(n + i) += -2.0 * weight_dx_ref_ * dx_ref_ / scale_factor_[1];
    }
  }

  if (has_end_state_ref_) {
    q->at(n - 1) +=
        -2.0 * weight_end_state_[0] * end_state_ref_[0] / scale_factor_[0];
    q->at(2 * n - 1) +=
        -2.0 * weight_end_state_[1] * end_state_ref_[1] / scale_factor_[1];
    q->at(3 * n - 1) +=
        -2.0 * weight_end_state_[2] * end_state_ref_[2] / scale_factor_[2];
  }
}

设定OSQP求解参数

OSQPSettings* PiecewiseJerkSpeedProblem::SolverDefaultSettings() {
  // Define Solver default settings
  OSQPSettings* settings =
      reinterpret_cast<OSQPSettings*>(c_malloc(sizeof(OSQPSettings)));
  osqp_set_default_settings(settings);
  settings->eps_abs = 1e-4;
  settings->eps_rel = 1e-4;
  settings->eps_prim_inf = 1e-5;
  settings->eps_dual_inf = 1e-5;
  settings->polish = true;
  settings->verbose = FLAGS_enable_osqp_debug;
  settings->scaled_termination = true;

  return settings;
}

Process

Process便是基于二次规划的速度优化算法的主流程了,主要包含以下步骤:

  1. 判断是否抵达终点,如果抵达终点,直接return。
  2. 检查路径是否为空
  3. 设置相关参数
  4. 更新STBoundary
  5. 更新速度边界和参考s
  6. 速度优化
  7. 输出

输入:

  • const PathData& path_data,
  • const SpeedData& speed_data,
  • const common::TrajectoryPoint& init_point.

输出:
得到最优的速度,信息包括 o p t _ s , o p t _ d s , o p t _ d d s opt\_s,opt\_ds,opt\_dds opt_s,opt_ds,opt_dds。在Process函数中最终结果保存到了speed_data中。

设置相关参数

  StGraphData& st_graph_data = *reference_line_info_->mutable_st_graph_data();

  const auto& veh_param =
      common::VehicleConfigHelper::GetConfig().vehicle_param();
  // 起始点(s,v,a)
  std::array<double, 3> init_s = {0.0, st_graph_data.init_point().v(),
                                  st_graph_data.init_point().a()};
  double delta_t = 0.1;
  double total_length = st_graph_data.path_length();
  double total_time = st_graph_data.total_time_by_conf();
  int num_of_knots = static_cast<int>(total_time / delta_t) + 1;
  // 分段加加速度速度优化算法
  PiecewiseJerkSpeedProblem piecewise_jerk_problem(num_of_knots, delta_t,
                                                   init_s);
  // 设置相关参数
  const auto& config = config_.piecewise_jerk_speed_optimizer_config();
  piecewise_jerk_problem.set_weight_ddx(config.acc_weight());
  piecewise_jerk_problem.set_weight_dddx(config.jerk_weight());

  piecewise_jerk_problem.set_x_bounds(0.0, total_length);
  piecewise_jerk_problem.set_dx_bounds(
      0.0, std::fmax(FLAGS_planning_upper_speed_limit,
                     st_graph_data.init_point().v()));
  piecewise_jerk_problem.set_ddx_bounds(veh_param.max_deceleration(),
                                        veh_param.max_acceleration());
  piecewise_jerk_problem.set_dddx_bound(FLAGS_longitudinal_jerk_lower_bound,
                                        FLAGS_longitudinal_jerk_upper_bound);

  piecewise_jerk_problem.set_dx_ref(config.ref_v_weight(),
                                    reference_line_info_->GetCruiseSpeed());

这部分需要注意一下:
可以看到,在速度规划方面, s s s的约束为 0 ≤ s ≤ p a t h l e n g t h 0\leq s \leq pathlength 0spathlength,此时还未考虑ST boundary; s ˙ \dot s s˙的约束为 0 ≤ s ˙ ≤ v m a x 0\leq \dot s \leq v_{max} 0s˙vmax v m a x v_{max} vmax选出FLAGS_planning_upper_speed_limit和起始点速度之中最大的一个; s ¨ \ddot s s¨的约束为 a d e c − m a x ≤ s ¨ ≤ a a c c − m a x a_{dec-max}\leq \ddot s \leq a_{acc-max} adecmaxs¨aaccmax,即在最大减速度和最大加速度范围内; s ′ ′ ′ s^{'''} s′′′的约束为 s l b ′ ′ ′ ≤ s ′ ′ ′ ≤ s u b ′ ′ ′ s^{'''}_{lb}\leq s^{'''} \leq s^{'''}_{ub} slb′′′s′′′sub′′′ j e r k jerk jerk的约束由FLAGS_longitudinal_jerk_lower_boundFLAGS_longitudinal_jerk_upper_bound两个参数决定; s ˙ r e f \dot s_{ref} s˙ref参考速度取决于当前路径的巡航速度。

更新STBoundary

遍历每个点,根据不同障碍物类型,更新STBoundary 。

  // Update STBoundary
  std::vector<std::pair<double, double>> s_bounds;
  for (int i = 0; i < num_of_knots; ++i) {
    double curr_t = i * delta_t;
    double s_lower_bound = 0.0;
    double s_upper_bound = total_length;
    for (const STBoundary* boundary : st_graph_data.st_boundaries()) {
      double s_lower = 0.0;
      double s_upper = 0.0;
      if (!boundary->GetUnblockSRange(curr_t, &s_upper, &s_lower)) {
        continue;
      }
      switch (boundary->boundary_type()) {
        case STBoundary::BoundaryType::STOP:
        case STBoundary::BoundaryType::YIELD:
          s_upper_bound = std::fmin(s_upper_bound, s_upper);
          break;
        case STBoundary::BoundaryType::FOLLOW:
          // TODO(Hongyi): unify follow buffer on decision side
          s_upper_bound = std::fmin(s_upper_bound, s_upper - 8.0);
          break;
        case STBoundary::BoundaryType::OVERTAKE:
          s_lower_bound = std::fmax(s_lower_bound, s_lower);
          break;
        default:
          break;
      }
    }
    if (s_lower_bound > s_upper_bound) {
      const std::string msg =
          "s_lower_bound larger than s_upper_bound on STGraph";
      AERROR << msg;
      speed_data->clear();
      return Status(ErrorCode::PLANNING_ERROR, msg);
    }
    s_bounds.emplace_back(s_lower_bound, s_upper_bound);
  }
  piecewise_jerk_problem.set_x_bounds(std::move(s_bounds));

其中涉及到这个函数GetUnblockSRange,用途是获取未被阻塞段的s的范围。

bool STBoundary::GetUnblockSRange(const double curr_time, double* s_upper,
                                  double* s_lower) const {
  CHECK_NOTNULL(s_upper);
  CHECK_NOTNULL(s_lower);
  // FLAGS_speed_lon_decision_horizon: Longitudinal horizon for speed decision making (meter) 200m;
  *s_upper = FLAGS_speed_lon_decision_horizon;
  *s_lower = 0.0;
  // 若不在boundary的范围内,说明未被阻塞
  if (curr_time < min_t_ || curr_time > max_t_) {
    return true;
  }

  size_t left = 0;
  size_t right = 0;
  // Given time t, find a segment denoted by left and right idx, that contains the time t. 
  // - If t is less than all or larger than all, return false.
  if (!GetIndexRange(lower_points_, curr_time, &left, &right)) {
    AERROR << "Fail to get index range.";
    return false;
  }

  if (curr_time > upper_points_[right].t()) {
    return true;
  }
  // 求出curr_time在segment中所占比例
  const double r =
      (left == right
           ? 0.0
           : (curr_time - upper_points_[left].t()) /
                 (upper_points_[right].t() - upper_points_[left].t()));
  // 线性插值
  double upper_cross_s =
      upper_points_[left].s() +
      r * (upper_points_[right].s() - upper_points_[left].s());
  double lower_cross_s =
      lower_points_[left].s() +
      r * (lower_points_[right].s() - lower_points_[left].s());
  // 根据障碍物类型,更新s_upper或s_lower
  if (boundary_type_ == BoundaryType::STOP ||
      boundary_type_ == BoundaryType::YIELD ||
      boundary_type_ == BoundaryType::FOLLOW) {
    *s_upper = lower_cross_s;
  } else if (boundary_type_ == BoundaryType::OVERTAKE) {
    *s_lower = std::fmax(*s_lower, upper_cross_s);
  } else {
    ADEBUG << "boundary_type is not supported. boundary_type: "
           << static_cast<int>(boundary_type_);
    return false;
  }
  return true;
}

更新速度边界和参考s

  // Update SpeedBoundary and ref_s
  std::vector<double> x_ref;
  std::vector<double> penalty_dx;
  std::vector<std::pair<double, double>> s_dot_bounds;
  const SpeedLimit& speed_limit = st_graph_data.speed_limit();
  for (int i = 0; i < num_of_knots; ++i) {
    double curr_t = i * delta_t;
    // get path_s
    SpeedPoint sp;
    reference_speed_data.EvaluateByTime(curr_t, &sp);
    const double path_s = sp.s();
    x_ref.emplace_back(path_s);
    // get curvature
    PathPoint path_point = path_data.GetPathPointWithPathS(path_s);
    penalty_dx.push_back(std::fabs(path_point.kappa()) *
                         config.kappa_penalty_weight());
    // get v_upper_bound
    const double v_lower_bound = 0.0;
    double v_upper_bound = FLAGS_planning_upper_speed_limit;
    v_upper_bound = speed_limit.GetSpeedLimitByS(path_s);
    s_dot_bounds.emplace_back(v_lower_bound, std::fmax(v_upper_bound, 0.0));
  }
  piecewise_jerk_problem.set_x_ref(config.ref_s_weight(), std::move(x_ref));
  piecewise_jerk_problem.set_penalty_dx(penalty_dx);
  piecewise_jerk_problem.set_dx_bounds(std::move(s_dot_bounds));

速度优化

  // Solve the problem
  if (!piecewise_jerk_problem.Optimize()) {
    const std::string msg = "Piecewise jerk speed optimizer failed!";
    AERROR << msg;
    speed_data->clear();
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }

输出

  // Extract output
  const std::vector<double>& s = piecewise_jerk_problem.opt_x();
  const std::vector<double>& ds = piecewise_jerk_problem.opt_dx();
  const std::vector<double>& dds = piecewise_jerk_problem.opt_ddx();
  for (int i = 0; i < num_of_knots; ++i) {
    ADEBUG << "For t[" << i * delta_t << "], s = " << s[i] << ", v = " << ds[i]
           << ", a = " << dds[i];
  }
  speed_data->clear();
  speed_data->AppendSpeedPoint(s[0], 0.0, ds[0], dds[0], 0.0);
  for (int i = 1; i < num_of_knots; ++i) {
    // Avoid the very last points when already stopped
    if (ds[i] <= 0.0) {
      break;
    }
    speed_data->AppendSpeedPoint(s[i], delta_t * i, ds[i], dds[i],
                                 (dds[i] - dds[i - 1]) / delta_t);
  }
  SpeedProfileGenerator::FillEnoughSpeedPoints(speed_data);
  RecordDebugInfo(*speed_data, st_graph_data.mutable_st_graph_debug());
  return Status::OK();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/971437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第二张微服务的调用与注册

文章目录 工程导入利用RestTemplate调用服务需求创建RestTemplate的实例到Spring容器使用RestTemplate发送请求消费者和提供者 Eureka注册中心服务远程调用会出现的问题Eureka的结构和作用Eureka的配置过程搭建注册中心服务注册服务发现 Ribbon负载均衡负载均衡原理源码跟踪总结…

windows server 2019 一键安装sqlserver2012

准备安装包和脚本 脚本代码 install.bat REM 自动判断权限问题&#xff0c;主动获取管理员权限 >nul 2>&1 "%SYSTEMROOT%\system32\cacls.exe" "%SYSTEMROOT%\system32\config\system" if %errorlevel% NEQ 0 ( goto UACPrompt ) else ( go…

PPT 架构师三板斧

PPT 架构师三板斧 目录概述需求&#xff1a; 设计思路实现思路分析1.多节点上PPT 架构师三板斧2.几张框框组合有组织3.专业词汇4.切记点要点 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;ski…

使用Jekyll + GitHub Pages搭建个人博客

本文将介绍如何使用Jekyll搭建个人博客&#xff0c;并部署在GitHub Pages上。 1.简介 Jekyll是一个强大的静态网站生成器&#xff0c;可以将Markdown、HTML、Liquid模板等文件转换为静态网站。Jekyll支持模板引擎、主题、插件、集成GitHub Pages等特性&#xff0c;可以帮助用…

GeoServe Web管理界面远程访问GeoServe Web管理界面的最佳工具

文章目录 前言1.安装GeoServer2. windows 安装 cpolar3. 创建公网访问地址4. 公网访问Geo Servcer服务5. 固定公网HTTP地址 前言 GeoServer是OGC Web服务器规范的J2EE实现&#xff0c;利用GeoServer可以方便地发布地图数据&#xff0c;允许用户对要素数据进行更新、删除、插入…

网络编程 day 7

1、将.txt表数据导入数据库中 #include <myhead.h>#define ERR_MSG(msg) do{\fprintf(stderr,"__%d__:",__LINE__);\perror(msg);\ }while(0)int main(int argc, const char *argv[]) {//以只读的方式打开dict.txt文件FILE* fd;if((fdfopen("./dict.txt&q…

C++多态案例2----制作饮品

#include<iostream> using namespace std;//制作饮品的大致流程都为&#xff1a; //煮水-----冲泡-----倒入杯中----加入辅料//本案例利用多态技术&#xff0c;提供抽象类制作饮品基类&#xff0c;提供子类制作茶叶和咖啡class AbstractDrinking {public://煮水//冲水//倒…

springboot整合elasticsearch使用案例

引入依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency> 添加注入 import org.apache.http.HttpHost; import org.elasticsearch.client.Res…

关于右值引用与完美转发

关于右值引用与完美转发 今日的疑问: 在下面的代码中,forwardFunction(n); // 为什么这里调用的是process(int&),而不是process(int&&)?解答:想要使用右值的方法有很多,如下: 今日的疑问: 在下面的代码中,forwardFunction(n); // 为什么这里调用的是process(int&a…

sql:SQL优化知识点记录(十)

&#xff08;1&#xff09;慢查询日志 Group by的优化跟Order by趋同&#xff0c;只是多了一个having 开启慢查询日志&#xff1a; 演示一下慢sql&#xff1a;4秒之后才会出结果 查看一下&#xff1a;下方显示慢查询的sql &#xff08;2&#xff09;批量插入数据脚本 函数和存…

大模型 Dalle2 学习三部曲(一)Latent Diffusion Models学习

引言 Diffusion model大获成功&#xff0c;但是它的短板也很明显&#xff0c;需要大量的计算资源&#xff0c;并且推理速度比较慢。如何才能提升Diffusion model的计算效率。业界有各种各样的改进&#xff0c;无疑Latent Diffusion Models&#xff08;潜在扩散模型&#xff0c;…

SpringMVC入门详细介绍

一. SpringMVC简介 Spring MVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架&#xff0c;通过把Model&#xff0c;View&#xff0c;Controller分离&#xff0c;将web层进行职责解耦&#xff0c;把复杂的web应用分成逻辑清晰的几部分&#xff0c;简化开发&a…

Redis面试题(笔记)

目录 1.缓存穿透 2.缓存击穿 3.缓存雪崩 小结 4.缓存-双写一致性 5.缓存-持久性 6.缓存-数据过期策略 7.缓存-数据淘汰策略 数据淘汰策略-使用建议 数据淘汰策略总结 8.redis分布式锁 setnx redission 主从一致性 9.主从复制、主从同步 10.哨兵模式 服务状态监…

QT Day2!!1.登录跳转界面 2.枚举类型 3.左值与右值4.面试问题

1.作业登录跳转界面 //form.h #ifndef FORM_H #define FORM_H#include <QWidget>namespace Ui { class Form; }class Form : public QWidget {Q_OBJECTpublic:explicit Form(QWidget *parent nullptr);~Form();public slots:void jump_slot();private:Ui::Form *ui; };…

1999块的3D扫描仪CR-Scan Ferret效果如何?

CR-Scan Ferret 13年前&#xff0c;微软推出的消费级深度相机Kinect轰动全球&#xff0c;但是Kinect三维扫描的细节难以令人满意。 今年4月&#xff0c;创想三维和奥比中光合作开发的一款消费级、高精度的三维扫描仪CR-Scan Ferret&#xff0c;在某东价格只有1999。这款扫描仪…

企业如何防止数据外泄——【部署智能透明加密防泄密系统】

为防止公司文件泄密&#xff0c;可以采取以下措施&#xff1a; www.drhchina.com 分部门部署&#xff1a;根据不同的部门需要&#xff0c;为不同部门用户部署灵活的加密方案。例如&#xff0c;对研发部、销售部、运营部的机密资料进行强制性自动加密&#xff0c;对普通部门的文…

开发指导—利用 CSS 动画实现 HarmonyOS 动效(二)

注&#xff1a;本文内容分享转载自 HarmonyOS Developer 官网文档 点击查看《开发指导—利用CSS动画实现HarmonyOS动效&#xff08;一&#xff09;》 3. background-position 样式动画 通过改变 background-position 属性&#xff08;第一个值为 X 轴的位置&#xff0c;第二个…

【mybatis-plus】多数据源切换[dynamic-datasource] 手动切换数据源

Springbootmybatis-plusdynamic-datasourceDruid 手动切换数据源 文章目录 Springbootmybatis-plusdynamic-datasourceDruid 手动切换数据源0.前言1. 多数据源核心类浅析1. 1. DynamicDataSourceContextHolder切换数据源核心类1.2. DynamicRoutingDataSource 2.基于核心类的理解…

楼兰图腾——树状数组

在完成了分配任务之后&#xff0c;西部 314 来到了楼兰古城的西部。 相传很久以前这片土地上(比楼兰古城还早)生活着两个部落&#xff0c;一个部落崇拜尖刀(V)&#xff0c;一个部落崇拜铁锹(∧)&#xff0c;他们分别用 V 和 ∧ 的形状来代表各自部落的图腾。 西部 314 在楼兰古…

面试中的时间管理:如何在有限时间内展示最大价值

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…