SiameseNet实战中文文本匹配任务

news2025/1/11 17:45:01

引言

本文我们通过SiameseNet模型来完成中文文本匹配任务,其中包含了文本匹配任务一般套路,后续只需要修改实现的模型。

数据准备

数据准备包括

  • 构建词表(Vocabulary)
  • 构建数据集(Dataset)

本次用的是LCQMC通用领域问题匹配数据集,它已经分好了训练、验证和测试集。

我们通过pandas来加载一下。

import pandas as pd

train_df = pd.read_csv(data_path.format("train"), sep="\t", header=None, names=["sentence1", "sentence2", "label"])

train_df.head()

image-20230903075315567

数据是长这样子的,有两个待匹配的句子,标签是它们是否相似。

由于我们这次要构建的模型中包含的是字符级别的嵌入,而不是单词级别的,因此不需要间jieba分词。

通过定义函数读取数据集:

def build_dataframe_from_csv(dataset_csv: str) -> pd.DataFrame:
    df = pd.read_csv(
        dataset_csv,
        sep="\t",
        header=None,
        names=["sentence1", "sentence2", "label"],
    )

    return df
train_df = build_dataframe_from_csv("../data/lcqmcdata/train.txt")
test_df = build_dataframe_from_csv("../data/lcqmcdata/test.txt")
dev_df = build_dataframe_from_csv("../data/lcqmcdata/dev.txt")

和上篇文章一样,我们这里可以复用之前写的代码,不熟悉的建议先阅读DSSM实战这篇文章。

from collections import defaultdict
from tqdm import tqdm
import numpy as np
import json
from torch.utils.data import Dataset
import pandas as pd
from typing import Tuple

UNK_TOKEN = "<UNK>"
PAD_TOKEN = "<PAD>"


class Vocabulary:
    """Class to process text and extract vocabulary for mapping"""

    def __init__(self, token_to_idx: dict = None, tokens: list[str] = None) -> None:
        """
        Args:
            token_to_idx (dict, optional): a pre-existing map of tokens to indices. Defaults to None.
            tokens (list[str], optional): a list of unique tokens with no duplicates. Defaults to None.
        """

        assert any(
            [tokens, token_to_idx]
        ), "At least one of these parameters should be set as not None."
        if token_to_idx:
            self._token_to_idx = token_to_idx
        else:
            self._token_to_idx = {}
            if PAD_TOKEN not in tokens:
                tokens = [PAD_TOKEN] + tokens

            for idx, token in enumerate(tokens):
                self._token_to_idx[token] = idx

        self._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()}

        self.unk_index = self._token_to_idx[UNK_TOKEN]
        self.pad_index = self._token_to_idx[PAD_TOKEN]

    @classmethod
    def build(
        cls,
        sentences: list[list[str]],
        min_freq: int = 2,
        reserved_tokens: list[str] = None,
    ) -> "Vocabulary":
        """Construct the Vocabulary from sentences

        Args:
            sentences (list[list[str]]): a list of tokenized sequences
            min_freq (int, optional): the minimum word frequency to be saved. Defaults to 2.
            reserved_tokens (list[str], optional): the reserved tokens to add into the Vocabulary. Defaults to None.

        Returns:
            Vocabulary: a Vocubulary instane
        """

        token_freqs = defaultdict(int)
        for sentence in tqdm(sentences):
            for token in sentence:
                token_freqs[token] += 1

        unique_tokens = (reserved_tokens if reserved_tokens else []) + [UNK_TOKEN]
        unique_tokens += [
            token
            for token, freq in token_freqs.items()
            if freq >= min_freq and token != UNK_TOKEN
        ]
        return cls(tokens=unique_tokens)

    def __len__(self) -> int:
        return len(self._idx_to_token)

    def __getitem__(self, tokens: list[str] | str) -> list[int] | int:
        """Retrieve the indices associated with the tokens or the index with the single token

        Args:
            tokens (list[str] | str): a list of tokens or single token

        Returns:
            list[int] | int: the indices or the single index
        """
        if not isinstance(tokens, (list, tuple)):
            return self._token_to_idx.get(tokens, self.unk_index)
        return [self.__getitem__(token) for token in tokens]

    def lookup_token(self, indices: list[int] | int) -> list[str] | str:
        """Retrive the tokens associated with the indices or the token with the single index

        Args:
            indices (list[int] | int): a list of index or single index

        Returns:
            list[str] | str: the corresponding tokens (or token)
        """

        if not isinstance(indices, (list, tuple)):
            return self._idx_to_token[indices]

        return [self._idx_to_token[index] for index in indices]

    def to_serializable(self) -> dict:
        """Returns a dictionary that can be serialized"""
        return {"token_to_idx": self._token_to_idx}

    @classmethod
    def from_serializable(cls, contents: dict) -> "Vocabulary":
        """Instantiates the Vocabulary from a serialized dictionary


        Args:
            contents (dict): a dictionary generated by `to_serializable`

        Returns:
            Vocabulary: the Vocabulary instance
        """
        return cls(**contents)

    def __repr__(self):
        return f"<Vocabulary(size={len(self)})>"


class TMVectorizer:
    """The Vectorizer which vectorizes the Vocabulary"""

    def __init__(self, vocab: Vocabulary, max_len: int) -> None:
        """
        Args:
            vocab (Vocabulary): maps characters to integers
            max_len (int): the max length of the sequence in the dataset
        """
        self.vocab = vocab
        self.max_len = max_len

    def _vectorize(
        self, indices: list[int], vector_length: int = -1, padding_index: int = 0
    ) -> np.ndarray:
        """Vectorize the provided indices

        Args:
            indices (list[int]): a list of integers that represent a sequence
            vector_length (int, optional): an arugment for forcing the length of index vector. Defaults to -1.
            padding_index (int, optional): the padding index to use. Defaults to 0.

        Returns:
            np.ndarray: the vectorized index array
        """

        if vector_length <= 0:
            vector_length = len(indices)

        vector = np.zeros(vector_length, dtype=np.int64)
        if len(indices) > vector_length:
            vector[:] = indices[:vector_length]
        else:
            vector[: len(indices)] = indices
            vector[len(indices) :] = padding_index

        return vector

    def _get_indices(self, sentence: list[str]) -> list[int]:
        """Return the vectorized sentence

        Args:
            sentence (list[str]): list of tokens
        Returns:
            indices (list[int]): list of integers representing the sentence
        """
        return [self.vocab[token] for token in sentence]

    def vectorize(
        self, sentence: list[str], use_dataset_max_length: bool = True
    ) -> np.ndarray:
        """
        Return the vectorized sequence

        Args:
            sentence (list[str]): raw sentence from the dataset
            use_dataset_max_length (bool): whether to use the global max vector length
        Returns:
            the vectorized sequence with padding
        """
        vector_length = -1
        if use_dataset_max_length:
            vector_length = self.max_len

        indices = self._get_indices(sentence)
        vector = self._vectorize(
            indices, vector_length=vector_length, padding_index=self.vocab.pad_index
        )

        return vector

    @classmethod
    def from_serializable(cls, contents: dict) -> "TMVectorizer":
        """Instantiates the TMVectorizer from a serialized dictionary

        Args:
            contents (dict): a dictionary generated by `to_serializable`

        Returns:
            TMVectorizer:
        """
        vocab = Vocabulary.from_serializable(contents["vocab"])
        max_len = contents["max_len"]
        return cls(vocab=vocab, max_len=max_len)

    def to_serializable(self) -> dict:
        """Returns a dictionary that can be serialized

        Returns:
            dict: a dict contains Vocabulary instance and max_len attribute
        """
        return {"vocab": self.vocab.to_serializable(), "max_len": self.max_len}

    def save_vectorizer(self, filepath: str) -> None:
        """Dump this TMVectorizer instance to file

        Args:
            filepath (str): the path to store the file
        """
        with open(filepath, "w") as f:
            json.dump(self.to_serializable(), f)

    @classmethod
    def load_vectorizer(cls, filepath: str) -> "TMVectorizer":
        """Load TMVectorizer from a file

        Args:
            filepath (str): the path stored the file

        Returns:
            TMVectorizer:
        """
        with open(filepath) as f:
            return TMVectorizer.from_serializable(json.load(f))


class TMDataset(Dataset):
    """Dataset for text matching"""

    def __init__(self, text_df: pd.DataFrame, vectorizer: TMVectorizer) -> None:
        """

        Args:
            text_df (pd.DataFrame): a DataFrame which contains the processed data examples
            vectorizer (TMVectorizer): a TMVectorizer instance
        """

        self.text_df = text_df
        self._vectorizer = vectorizer

    def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray, int]:
        row = self.text_df.iloc[index]
        return (
            self._vectorizer.vectorize(row.sentence1),
            self._vectorizer.vectorize(row.sentence2),
            row.label,
        )

    def get_vectorizer(self) -> TMVectorizer:
        return self._vectorizer

    def __len__(self) -> int:
        return len(self.text_df)

完全复用,一个标点符号都没改,所以写一个通用的类很重要。

由于对中文字符串来说 ,本身迭代时就是按字分隔的,所以可以直接传入Vocabularybuild方法。

train_corpus = train_df.sentence1.to_list() + train_df.sentence2.to_list()
train_corpus[0]
'喜欢打篮球的男生喜欢什么样的女生'

其中都是这种中文字符串。

vocab = Vocabulary.build(train_corpus, min_freq=1)
vocab
100%|██████████| 477532/477532 [00:02<00:00, 210755.76it/s]
<Vocabulary(size=5041)>

可以看到这里按字拆分的词表中共5041个字符,我们可以确认一下真的是按字拆分的:

vocab.to_serializable()
{'token_to_idx': {'<PAD>': 0,
  '<UNK>': 1,
  '喜': 2,
  '欢': 3,
  '打': 4,
  '篮': 5,
  '球': 6,
  '的': 7,
  '男': 8,
  '生': 9,
  '什': 10,
  '么': 11,
  '样': 12,
  '女': 13,
  '我': 14,
  '手': 15,
  '机': 16,
  '丢': 17,
  '了': 18,
  ',': 19,
  '想': 20,
  '换': 21,
  '个': 22,
  '大': 23,
  '家': 24,
  '觉': 25,
  '得': 26,
  '她': 27,
  '好': 28,
  '看': 29,
  '吗': 30,
  '求': 31,
  ...
  '*': 984,
  '治': 985,
  '绑': 986,
  '定': 987,
  '宗': 988,
  '辣': 989,
  '椒': 990,
  '牙': 991,
  '执': 992,
  '言': 993,
  '进': 994,
  '条': 995,
  '非': 996,
  '常': 997,
  '歉': 998,
  '历': 999,
  ...}}

有了词表之后,我们就可以构建向量化类:

vectorizer = TMVectorizer(vocab, args.max_len)

接着就是数据集和数据加载器:

train_dataset = TMDataset(train_df, vectorizer)
test_dataset = TMDataset(test_df, vectorizer)
dev_dataset = TMDataset(dev_df, vectorizer)

train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
dev_data_loader = DataLoader(dev_dataset, batch_size=args.batch_size)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size)

我们可以检查下加载器的输出:

for x1, x2, y in train_data_loader:
    print(x1)
    print(x2)
    print(y)
    break
tensor([[  80, 1282, 1729,  ...,    0,    0,    0],
        [ 428,  519,  893,  ...,    0,    0,    0],
        [  31, 3441,  750,  ...,    0,    0,    0],
        ...,
        [2980, 2777,  872,  ...,    0,    0,    0],
        [1153, 1661,  105,  ...,    0,    0,    0],
        [ 330, 2434,  126,  ...,    0,    0,    0]])
tensor([[  80, 1282, 1729,  ...,    0,    0,    0],
        [ 909,  838,  472,  ...,    0,    0,    0],
        [  31, 3441,  750,  ...,    0,    0,    0],
        ...,
        [ 996,  997,   18,  ...,    0,    0,    0],
        [1153, 1661,   49,  ...,    0,    0,    0],
        [ 126,   22,  181,  ...,    0,    0,    0]])
tensor([1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
        0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,
        1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
        1, 0, 0, 1, 0, 0, 1, 0])

至此数据就准备好了。

构建模型

import torch.nn as nn
import torch
from argparse import Namespace


class SiameseNet(nn.Module):
    """The Siamese Network implemention."""

    def __init__(self, args: Namespace) -> None:
        """

        Args:
            args (Namespace): arguments for the whole network
        """
        super().__init__()

        if args.activation.lower() == "relu":
            activate_func = nn.ReLU()
        else:
            activate_func = nn.Tanh()

        self.embedding = nn.Sequential(
            nn.Embedding(args.vocab_size, args.embedding_dim),
            nn.Dropout(args.dropout),
            nn.LSTM(
                args.embedding_dim,
                args.lstm_hidden_dim,
                num_layers=args.lstm_num_layers,
                dropout=args.lstm_dropout,
                batch_first=True,
                bidirectional=True,
            ),
        )

        self.dense = nn.Sequential(
            nn.Dropout(args.dropout),
            nn.Linear(args.linear_hidden_dim, args.linear_hidden_dim),
            activate_func,
            nn.Dropout(args.dropout),
        )

    def forward(self, sentence1: torch.Tensor, sentence2: torch.Tensor) -> torch.Tensor:
        """Using the same network to compute the representations of two sentences

        Args:
            sentence1 (torch.Tensor): shape (batch_size, seq_len)
            sentence2 (torch.Tensor): shape (batch_size, seq_len)

        Returns:
            torch.Tensor: the cosine similarity between sentence1 and sentence2
        """

        embed_1, _ = self.embedding(sentence1)
        embed_2, _ = self.embedding(sentence2)

        vector_1 = self.dense(torch.mean(embed_1, dim=1))
        vector_2 = self.dense(torch.mean(embed_2, dim=1))

        return torch.cosine_similarity(vector_1, vector_2, dim=1, eps=1e-8)

实现和DSSM差不多,这里沿用论文的设定,在LSTM中每层间和其他网络层之间引入dropout。不过其他网络层之间的dropout比率设成了0.1。

定义对比损失

class ContrastiveLoss(nn.Module):
    def __init__(self, m: float = 0.2) -> None:
        """

        Args:
            m (float, optional): margin. Defaults to 0.2.
        """
        super().__init__()
        self.m = m

    def forward(self, energy: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
        """Computes the contrastive loss between the embeddings of x1 and x2

        Args:
            energy (torch.Tensor):  the cosine similarity between the embeddings of x1 and x2
            label (torch.Tensor): an integer indicates whether x1 and x2 are similar (= 1) or dissimilar (= 0).

        Returns:
            torch.Tensor:
        """
        loss_pos = 0.25 * (1 - energy) ** 2
        loss_neg = (
            torch.where(
                energy < self.m,
                torch.full_like(energy, 0),
                energy,
            )
            ** 2
        )

        loss = label * loss_pos + (1 - label) * loss_neg

        return loss.sum()

这里完全按照原论文对比损失的定义实现,传入的energy是计算好的余弦相似度。

训练模型

定义评估指标:

def metrics(y: torch.Tensor, y_pred: torch.Tensor) -> Tuple[float, float, float, float]:
    TP = ((y_pred == 1) & (y == 1)).sum().float()  # True Positive
    TN = ((y_pred == 0) & (y == 0)).sum().float()  # True Negative
    FN = ((y_pred == 0) & (y == 1)).sum().float()  # False Negatvie
    FP = ((y_pred == 1) & (y == 0)).sum().float()  # False Positive
    p = TP / (TP + FP).clamp(min=1e-8)  # Precision
    r = TP / (TP + FN).clamp(min=1e-8)  # Recall
    F1 = 2 * r * p / (r + p).clamp(min=1e-8)  # F1 score
    acc = (TP + TN) / (TP + TN + FP + FN).clamp(min=1e-8)  # Accurary
    return acc, p, r, F1

定义评估函数:

def evaluate(
    data_iter: DataLoader, model: nn.Module
) -> Tuple[float, float, float, float]:
    y_list, y_pred_list = [], []
    model.eval()
    for x1, x2, y in tqdm(data_iter):
        x1 = x1.to(device).long()
        x2 = x2.to(device).long()
        y = y.float().to(device)

        similarity = model(x1, x2)

        pred = (similarity > 0.5).int()

        y_pred_list.append(pred)
        y_list.append(y)

    y_pred = torch.cat(y_pred_list, 0)
    y = torch.cat(y_list, 0)
    acc, p, r, f1 = metrics(y, y_pred)
    return acc, p, r, f1

评估函数的实现和DSSM差不多,这里用大于0.5表示两段文本是相似的,否则为不相似,这是一个经验参数,可以试着调整。

定义训练函数:

def train(
    data_iter: DataLoader,
    model: nn.Module,
    criterion: ContrastiveLoss,
    optimizer: torch.optim.Optimizer,
    print_every: int = 500,
    verbose=True,
) -> None:
    model.train()

    for step, (x1, x2, y) in enumerate(tqdm(data_iter)):
        x1 = x1.to(device).long()
        x2 = x2.to(device).long()
        y = y.float().to(device)

        similarity = model(x1, x2)

        loss = criterion(similarity, y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if verbose and (step + 1) % print_every == 0:
            pred = (similarity > 0.5).int()
            acc, p, r, f1 = metrics(y, pred)

            print(
                f" TRAIN iter={step+1} loss={loss.item():.6f} accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
            )

在训练之前定义所需的所有参数:

 args = Namespace(
        dataset_csv="text_matching/data/lcqmc/{}.txt",
        vectorizer_file="vectorizer.json",
        model_state_file="model.pth",
        save_dir=f"{os.path.dirname(__file__)}/model_storage",
        reload_model=False,
        cuda=True,
        learning_rate=1e-3,
        batch_size=128,
        num_epochs=10,
        max_len=50,
        embedding_dim=512,
        lstm_hidden_dim=64,
        lstm_num_layers=4,
        lstm_dropout=0.2,
        linear_hidden_dim=128,
        activation="relu",
        margin=0.3,
        dropout=0.1,
        min_freq=1,
        print_every=500,
        verbose=True,
    )

对比DSSM有些修改,比如构建词表时的min_freq=1max_len=50表示最长50个字符、学习率调整为0.001

最后就是定义优化器和对比损失函数。

optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
criterion = ContrastiveLoss(args.margin)

for epoch in range(args.num_epochs):
    train(
        train_data_loader,
        model,
        criterion,
        optimizer,
        print_every=args.print_every,
        verbose=args.verbose,
    )
    print("Begin evalute on dev set.")
    with torch.no_grad():
        acc, p, r, f1 = evaluate(dev_data_loader, model)

        print(
            f"EVALUATE [{epoch+1}/{args.num_epochs}]  accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
        )

model.eval()

acc, p, r, f1 = evaluate(test_data_loader, model)
print(f"TEST accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")

由于引入了RNN,训练时间相比DSSM要长一些:

...
TRAIN iter=1500 loss=8.042133 accuracy=0.812 precision=0.912 recal=0.732 f1 score=0.8125
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [01:20<00:00, 23.06it/s] 
Begin evalute on dev set.
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:00<00:00, 81.56it/s] 
EVALUATE [9/10]  accuracy=0.698 precision=0.704 recal=0.684 f1 score=0.6937
 27%|█████████████████████████████████████████████████▋                                                                                                                                        | 498/1866 [00:22<01:01, 22.24it/s] 
TRAIN iter=500 loss=6.863042 accuracy=0.805 precision=0.943 recal=0.694 f1 score=0.8000
 53%|███████████████████████████████████████████████████████████████████████████████████████████████████▍                                                                                      | 998/1866 [00:44<00:37, 23.39it/s] 
TRAIN iter=1000 loss=7.218624 accuracy=0.781 precision=0.903 recal=0.718 f1 score=0.8000
 80%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌                                    | 1499/1866 [01:05<00:15, 22.97it/s] 
TRAIN iter=1500 loss=8.405084 accuracy=0.758 precision=0.926 recal=0.649 f1 score=0.7634
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1866/1866 [01:21<00:00, 22.81it/s] 
Begin evalute on dev set.
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 69/69 [00:00<00:00, 76.84it/s] 
EVALUATE [10/10]  accuracy=0.711 precision=0.714 recal=0.702 f1 score=0.7082
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:01<00:00, 78.78it/s] 
TEST accuracy=0.763 precision=0.724 recal=0.849 f1 score=0.7816

最终在测试集上验证效果不错,比上次DSSM模型准确率提高了5个点左右。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/969617.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RK3568-android11-适配ov13850摄像头

硬件连接 主要分为两部分: mipi接口:传输摄像头数据 i2c接口:配置摄像头和对焦马达芯片寄存器相关驱动 |-- arch/arm64/boot/dts/rockchip DTS配置文件 |-- drivers/phy/rockchip/|-- phy-rockchip-mipi-rx.c mipi dphy 驱动 |-- drivers/media||-- platform/rockchip/isp1…

20230903-闹钟

app.cpp #include "app.h" #include "ui_app.h" int k1 true;APP::APP(QWidget *parent):QWidget(parent),ui(new Ui::APP) {ui->setupUi(this);this->resize(380,300);this->setStyleSheet("background-color:cyan;");//设置样式spe…

关于指针的一些练习(1)

1. int main() {int a[3][2] { (0,1),(2,3),(4,5) };int* p;p a[0];printf("%d", p[0]);return 0; } 解析&#xff1a;a是一个3行2列的二维数组&#xff0c;对他进行初始化时大括号里面是逗号表达式&#xff0c;根据逗号表达式可以得到a数组中元素为1&#xff0c…

知识图谱推理研究综述9.3

综述分类 根据样本量大小的不同&#xff0c;将知识图谱推理方法分为多样本推理、少样本推理和零与单样本推理 KG定义&#xff1a;&#xff08;Y&#xff09; 知识图谱是以图的形式表示真实世界的实体与关系之间关系的知识库。 具体来说知识图谱是通过将应用数学、图形学、信…

培训机构如何利用小程序提升服务质量

近年来&#xff0c;小程序成为了许多企业和机构进行线上业务拓展的新方式。对于培训机构来说&#xff0c;构建一个具有吸引力的小程序可以帮助他们更好地与学员进行互动和沟通&#xff0c;并提供更便捷的学习服务。那么&#xff0c;如何使用第三方制作平台来构建一个具有吸引力…

线性代数的学习和整理18:什么是维度,什么是秩?关于秩的各种定理 (未完成)

目录 1 矩阵的秩 矩阵的秩 2 求秩的方法 矩阵的维度秩 矩阵的维度 向量的模&#xff0c;矩阵的模-没有把&#xff0c;难道是面积&#xff1f; 矩阵的平直概念 5 矩阵的初等变换&#xff08;矩阵等价概念的引出&#xff09; 0 问题引出&#xff1a;什么是秩&#xff1f;…

UG\NX CAM二次开发 查询工序所在的几何组TAG UF_OPER_ask_geom_group

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 查询工序所在的几何组TAG UF_OPER_ask_geom_group 效果: 代码: void MyClass::do_it() { int count=0;tag_t * objects;UF_UI_ONT_ask_selected_nodes(&count, &objects);for (in…

第二章 USB应用笔记之USB通讯基础

第二章 USB应用笔记之USB主设备和从设备 文章目录 第二章 USB应用笔记之USB主设备和从设备1.连接 > 2.主机枚举USB设备 > 3.有效数据传输&#xff0c;功能控制1.连接检测USB系统主要包括USB主机和USB设备两种设备。USB拓扑结构USB连接检测全速D上拉1.5K电阻&#xff08;高…

Kafka核心原理第二弹——更新中

架构原理 一、高吞吐机制&#xff1a;Batch打包、缓冲区、acks 1. Kafka Producer怎么把消息发送给Broker集群的&#xff1f; 需要指定把消息发送到哪个topic去 首先需要选择一个topic的分区&#xff0c;默认是轮询来负载均衡&#xff0c;但是如果指定了一个分区key&#x…

第五章 树与二叉树 六、树的存储结构

一、双亲表示法&#xff08;顺序存储&#xff09; 结点的指针指向父节点的位置 #define MAX_Tree_Size 100 //双亲表示法 typedef struct {int data;//数据域int parent;//双亲位置域 }PTNode;typedef struct { //树的定义PTNode nodes[MAX_Tree_Size]; //双亲表示int …

【Java实战项目】【超详细过程】—大饼的图片服务器2

代码操作数据库 pom.xml1.juit2.gson3.mysql依赖4.servlet DBUtil类Image类ImageDao类 本文主要讲述了用代码对数据库的操作&#xff0c;maven项目创建后进行如下操作&#xff1a; maven项目创建可以看这里&#xff1a;Servlet-day01 这里面有详细介绍 pom.xml pom.xml中放置了…

Vulnhub: Inferno: 1.1靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.233 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.23380端口目录爆破 gobuster dir -u http://192.168.111.233 -w /usr/share/wordlists/dirbuster/directory-list-2.3-me…

使用Docker配置深度学习的运行环境

文章目录 推荐实验环境前言docker安装docker操作docker配置常见方法&#xff08;安装包、联网、程序管理器&#xff09;安装驱动的前提要求传统方法安装驱动程序程序管理器安装联网安装deb包安装 安装完成后的设置非传统方法安装-通过容器安装驱动的前提要求安装NVIDIA-Contain…

UG\NX CAM二次开发 获取工序类型 UF_OPER_ask_oper_type

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 获取工序类型 UF_OPER_ask_oper_type 效果: 代码: void MyClass::do_it() { int count=0;tag_t * objects;UF_UI_ONT_ask_selected_nodes(&count, &objects);for (int i=0; i<co…

Kotlin语言基础(一)Kotlin语言特性

Kotlin语言概述&#xff08;一&#xff09;- 语言特性 Kotlin是一种高级强类型语言&#xff0c;可以在Java VM上运行。 它具有如下特性&#xff1a; 1.代码简洁&#xff0c;代码量少&#xff0c;易学易懂。 例如&#xff1a; /*** 定义数据类Student* property id String 学…

14. Loadrunner 详细介绍以及使用

目录 1. Loadrunner 环境搭建 2. Loadrunner 介绍 3. Loadrunner 三大组件之间的关系 4. Loadrunner 脚本录制 4.1 WebTours 项目 4.1.1 如何启动项目 4.1.2 如何访问项目 4.1.3 相关配置 4.2 脚本录制 4.3 脚本加强 4.3.1 插入事务 4.3.2 插入集合点 4.3.3 插入检…

Marin说PCB之TDK和Murata电容哪家强?

不是各位朋友是否听说华为新款手机MATE60Pro已经开始发布销售了&#xff0c;小编我听到这个消息后很是震惊啊&#xff0c;这两年老美一直打压我们中国芯片行业的发展&#xff0c;而且拿华为开刀&#xff0c;搞了一些很恶心的手段来限制和打压华为的发展。所以当我听到新款的MAT…

JavaScript基础代码

以下是一些 JavaScript 基础代码示例&#xff1a; 变量定义 // 定义字符串变量 var name "John";// 定义数字变量 var age 30;// 定义布尔变量 var isMarried false;控制语句 // if 语句 if (age > 18) {console.log("成年人"); } else {console.…

点云处理库Open3D基础操作1

文章目录 基础介绍Open3D读取文件Voxel降采样裁剪点云Open3D点云和numpy数组的转换点云的bounding box 欢迎访问个人网络日志&#x1f339;&#x1f339;知行空间&#x1f339;&#x1f339; 基础介绍 Open3D是英特尔公司于2015年发布的开源3D视觉算法库&#xff0c;截至2023年…

QT(9.3)定时器,绘制事件

作业&#xff1a; 自定义一个闹钟 pro文件&#xff1a; QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecat…