【5】openGL使用宏和函数进行错误检测

news2024/11/29 2:50:21

当我们编写openGL程序,没有报编译链接错误,但是运行结果是黑屏,这不是我们想要的。

openGL提供了glGetError 来检查错误,我们可以通过在运行时进行打断点查看glGetError返回值,得到的是一个十进制数,将其转为十六进制,再转到 glew.h 里查询这个数,就能看到错误类型。

举个例子:

static void GLClearError() {
    while (glGetError() != GL_NO_ERROR); /* ? */
}

static void GLCheckError() {
    while (GLenum error = glGetError())
    {
        std::cout << "[OpenGL_Error] (" << error << ")" << std::endl;
    }
}
    GLClearError();/*清除错误*/
	glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr);
	GLCheckError();

上面这是正常代码。现在我们将 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr);GL_UNSIGNED_INT 改为 GL_INT。如果不添加错误信息检测代码,直接运行的话,只能看到黑屏,不会有错误提示,有了错误检测,会看到终端循环输出错误码:1280。1280的十六进制是0x0500,转到 glew.h查看,错误类型:在这里插入图片描述
循环输出错误码,是不太好,我们想让他出现错误就跟碰到断点一样停下来,因此定义一个宏:

#define ASSERT(x) if(!(x)) __debugbreak();

再把清除错误和错误检查的代码写在一个函数里,同时我们还想得到错误在哪一行,函数名,文件名:

static bool GLLogCall(const char* function, const char* file, int line) {
    while (GLenum error = glGetError())
    {
        std::cout << "[OpenGL_Error] (" << error << "): " << function
            << " " << file << ":" << line << std::endl;
        return false;
    }
    return true;
}
/*注意 \ 后面直接打回车,不要打空格*/
#define GLCall(x) GLClearError();\
    x;\
    ASSERT(GLLogCall(#x, __FILE__, __LINE__))

这样就简化了操作,还得到了更多信息:

GLCall(glDrawElements(GL_TRIANGLES, 6, GL_INT, nullptr));

完整代码:

#include <iostream>
#include <string> 

#include <GL/glew.h> 
#include <GLFW/glfw3.h>
#include <fstream>
#include <sstream>

#define ASSERT(x) if(!(x)) __debugbreak();
/*注意 \ 后面直接打回车,不要打空格*/
#define GLCall(x) GLClearError();\
    x;\
    ASSERT(GLLogCall(#x, __FILE__, __LINE__))

static void GLClearError() {
    while (glGetError() != GL_NO_ERROR); /* ? */
}

static void GLCheckError() {
    while (GLenum error = glGetError())
    {
        std::cout << "[OpenGL_Error] (" << error << ")" << std::endl;
    }
}

static bool GLLogCall(const char* function, const char* file, int line) {
    while (GLenum error = glGetError())
    {
        std::cout << "[OpenGL_Error] (" << error << "): " << function
            << " " << file << ":" << line << std::endl;
        return false;
    }
    return true;
}

struct ShaderProgramSource
{
    std::string VertexSource;
    std::string FragmentSource;
};

static ShaderProgramSource ParseShader(const std::string& filepath) {
    std::ifstream stream(filepath);

    /*您提出了一个好问题。从语法角度来分析一下,enum class 为什么被称为"带作用域的枚举类型":

- 普通的 enum 定义是:

  enum EnumName {
   value1, 
   value2
  }

- 枚举值不加作用域,可以直接使用值名

- 而 enum class 定义是:

  enum class EnumName {
   value1,
   value2
  } 

- 这里使用了class关键字

- 根据C++标准,class关键字会为枚举类型生成一个新的作用域

- 枚举值名会放在这个新的作用域中

- 所以要使用枚举值名,需要加上作用域操作符::

 如EnumName::value1

- 这样就隔离开其他作用域中的可能重复名称

- 并防止枚举值名与其他名称冲突

所以,从enum class语法中class关键字产生的作用域来看:

- 它为枚举类型值名生成了一个独立的命名空间

- 这就产生了"带作用域"的语义

希望这个分析可以帮您理解enum class的语法机制!*/
    enum class ShaderType { /* 带作用域的枚举类型,不是类*/
        NONE = -1, VERTEX = 0, FRAGMENT = 1
    };

    std::string line;
    std::stringstream ss[2];
    ShaderType type = ShaderType::NONE;
    while (getline(stream, line)) {
        if (line.find("#shader") != std::string::npos) { /* 找到了*/
            if (line.find("vertex") != std::string::npos) {
                // set mode to vertex
                type = ShaderType::VERTEX;
            }
            else if (line.find("fragment") != std::string::npos) {
                // set mode to fragment
                type = ShaderType::FRAGMENT;
            }
        }
        else {
            ss[(int)type] << line << '\n';
        }
    }

    return { ss[0].str(), ss[1].str() };
}
 

/*方便起见,写成一个函数*/
static unsigned int CompileShader(unsigned int type, const std::string& source) {
    unsigned int id = glCreateShader(type);/*vertex 或者 fragment */
    const char* src = source.c_str(); /*或者写 &source[0]*/
    glShaderSource(id, 1, &src, nullptr);
    glCompileShader(id);

    int result;
    glGetShaderiv(id, GL_COMPILE_STATUS, &result);
    if (result == GL_FALSE) {
        int length;
        glGetShaderiv(id, GL_INFO_LOG_LENGTH, &length);
        // char message[length]; /*这里会发现因为长度不定,无法栈分配,但你仍要这么做*/
        char* message = (char*)alloca(length * sizeof(char));
        glGetShaderInfoLog(id, length, &length, message);
        std::cout << "Failed to compile " << 
            (type == GL_VERTEX_SHADER ? "vertex":"fragment" )<< "shader!请定位到此行" << std::endl;
        std::cout << message << std::endl;
        glDeleteShader(id);
        return 0;
    }

    return id;
}

/*使用static是因为不想它泄露到其他翻译单元?
使用string不是最好的选择,但是相对安全, int类型-该着色器唯一标识符,一个ID*/
static unsigned int CreateShader(const std::string& vertexShader, const std::string& fragmentShader) {
    /*使用unsigned是因为它接受的参数就是这样,
    或者可以使用 GLuint,但是作者不喜欢这样,因为它要使用多个图像api*/
    unsigned int program = glCreateProgram();
    unsigned int vs = CompileShader(GL_VERTEX_SHADER, vertexShader);
    unsigned int fs = CompileShader(GL_FRAGMENT_SHADER, fragmentShader);

    glAttachShader(program, vs);
    glAttachShader(program, fs);
    glLinkProgram(program);
    glValidateProgram(program);

    glDeleteShader(vs);
    glDeleteShader(fs);

    return program;
}

int main(void)
{
    GLFWwindow* window;

    /* Initialize the library */
    if (!glfwInit())
        return -1;

    //if (glewInit() != GLEW_OK)/*glew文档,这里会报错,因为需要上下文,而上下文在后面*/
    //    std::cout << "ERROR!-1" << std::endl;

    /* Create a windowed mode window and its OpenGL context */
    window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
    if (!window)
    {
        glfwTerminate();
        return -1;
    }

    /* Make the window's context current */
    glfwMakeContextCurrent(window);

    if (glewInit() != GLEW_OK)/*这里就不会报错了*/
        std::cout << "ERROR!-2" << std::endl;

    std::cout << glGetString(GL_VERSION) << std::endl;

    float positions[] = { /*冗余的点,因此需要index buffer*/
        -0.5f, -0.5f,// 0
        0.5f, -0.5f,// 1
        0.5f, 0.5f, // 2
        -0.5f, 0.5f, // 3
    };

    unsigned int indices[] = {
        0, 1, 2,
        2, 3, 0
    };

    /*
    这段代码是创建和初始化顶点缓冲对象(Vertex Buffer Object,简称VBO)。

VBO是OpenGL中一个很重要的概念,用于高效渲染顶点数据。

它这段代码的作用是:

glGenBuffers生成一个新的VBO,ID保存到buffer变量中。

glBindBuffer将这个VBO绑定到GL_ARRAY_BUFFER目标上。

glBufferData向被绑定的这个VBO中填充实际的顶点数据。

通过这三步:

我们得到了一个可以存储顶点数据的VBO对象

后续绘制调用只需要指定这个VBO就可以加载顶点数据

教程强调VBO是因为:

相对直接送入顶点更高效

绘制调用不再需要每帧重复发送相同顶点

提高渲染性能

所以总结下VBO可以高效绘制复杂顶点数据至显卡,是OpenGL重要概念



glGenBuffers(1, &buffer);
glGenBuffers作用是生成VBO对象的ID编号。

第一个参数1表示要生成的VBO数量,这里只生成1个。

第二个参数&buffer是用于返回生成的VBO ID编号。

glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBindBuffer用于将VBO对象绑定到指定的目标上。

第一个参数GL_ARRAY_BUFFER表示要绑定的目标是顶点属性数组缓冲。

GL_ARRAY_BUFFER指定将要保存顶点属性数据如位置、颜色等。

第二个参数buffer就是前面glGenBuffers生成的VBO ID。

所以总结下:

glGenBuffers生成1个VBO对象并获取ID编号

glBindBuffer将这个VBO绑定到属性缓冲目标上,作为后续顶点数据的存储对象。




glBufferData的作用是向之前绑定的VBO对象中填充实际的顶点数据。

参数说明:

GL_ARRAY_BUFFER:指定操作目标为顶点属性缓冲(与glBindBuffer一致)

6 * sizeof(float):数据大小,这里 positions 数组有6个float数

positions:数组指针,提供实际的数据源

GL_STATIC_DRAW:数据使用模式

GL_STATIC_DRAW:数据不会或很少改变
GL_DYNAMIC_DRAW:数据可能会被修改
GL_STREAM_DRAW:数据每次绘制都会改变
它的功能是:

分配指定大小内存给当前绑定的VBO对象

将positions数组内容拷贝到VBO对象内存中

以GL_STATIC_DRAW模式,显卡知道如何优化分配内存

这样一来,positions数组中的顶点数据就上传到GPU中VBO对象里了。

OpenGL随后通过该VBO对象来读取顶点数据进行绘制。

*/
    unsigned int buffer;
    glGenBuffers(1, &buffer);
    glBindBuffer(GL_ARRAY_BUFFER, buffer);
    glBufferData(GL_ARRAY_BUFFER, 6 * 2 * sizeof(float), positions, GL_STATIC_DRAW);

    glEnableVertexAttribArray(0);
    /*index-只有一个属性,填0
    size-两个数表示一个点,填2
    stripe-顶点之间的字节数
    pointer-偏移量




    好的,我们来用一个例子来解释glVertexAttribPointer的参数含义:

假设我们有一个VBO,里面存放3个三维顶点数据,每个顶点由(x,y,z)组成,每个元素类型为float。

那么数据在VBO中排列如下:

VBO地址 | 数据
0     |  x1
4     |  y1\
8     |  z1
12     |  x2
16     |  y2
20     |  z2
24     |  x3
28     |  y3
32     |  z3

现在我们要告诉OpenGL如何解析这些数据:

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 12, 0);

- 0:属性为位置数据
- 3:每个位置由3个float组成,(x,y,z)
- GL_FLOAT:数据类型是float
- 12:当前属性到下一个属性的间隔,即一个顶点需要12个字节
- 0:这个属性起始位置就是VBO的开头

这样OpenGL就知道:

- 从VBO开始地址读取3个float作为第一个顶点的位置
- 下一个顶点偏移12字节再读取3个float

最后一个参数0就是告诉OpenGL属性的起始读取偏移是多少。





    
    好的,用一个例子来具体说明一下这种情况:

假设我们有一个VBO来存储顶点数据,每个顶点包含位置和颜色两个属性。

数据在VBO内部的排列方式为:

位置x | 位置y | 位置z | 颜色r | 颜色g | 颜色b

那么对于第一个顶点来说,它在VBO内的布局是:

VBO地址 | 数据
0     |  位置x\
4     |  位置y
8     |  位置z
12    |  颜色r
16    |  颜色g
20    |  颜色b

此时,我们设置位置属性和颜色属性的指针:

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 24, 0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 24, 12);

可以看到:

- 位置属性从0字节处开始读取
- 颜色属性从12字节处开始读取(让出位置数据占用的空间)

这就是为什么位置属性的偏移不能写0,需要指定非0偏移量让出给颜色属性存储空间。

这样才能正确解析这两个分开但共处一个VBO的数据。*/
    glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, 0);/* (const void)*/

    unsigned int ibo;
    glGenBuffers(1, &ibo);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(unsigned int), indices, GL_STATIC_DRAW);

   
    // 测试 ShaderProgramSource
    ShaderProgramSource source = ParseShader("res/shaders/Basic.shader"); 

    unsigned int shader = CreateShader(source.VertexSource, source.FragmentSource);
    glUseProgram(shader);

    /* Loop until the user closes the window */
    while (!glfwWindowShouldClose(window))
    {
        /* Render here */
        glClear(GL_COLOR_BUFFER_BIT);

        /*检查错误,例如下面经典错误,如果不检查,得到的结果只是输出一个黑屏
        没有图像*/

        //GLClearError();/*清除错误*/
         glDrawArrays(GL_TRIANGLES, 0, 6);
        //glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr);
         GLCheckError();
        ///*GLCheckError();检查错误,上一条语句错误测试,应该使用GL_UNSIGNED_INT,
        //而不是GL_INT,显示错误1280,
        //转十六位 0x500,可以在glew.h查看定义*/

        ///*使用GLCheckError比较麻烦,需要执行的时候手动打断点,因此换一个*/
        //ASSERT(GLLogCall());

        /*每次检查错误都要在语句前面使用使用GLCearError()很麻烦,修改的更方便*/
        GLCall(glDrawElements(GL_TRIANGLES, 6, GL_INT, nullptr));

    /*    glBegin(GL_TRIANGLES);
        glVertex2f(-0.5f, 0.5f);
        glVertex2f(0.0f, 0.0f);
        glVertex2f(0.5f, 0.5f);
        glEnd();*/

        /* Swap front and back buffers */
        glfwSwapBuffers(window);

        /* Poll for and process events */
        glfwPollEvents();
    }

    glDeleteProgram(shader);

    glfwTerminate();
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/967832.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jenkins+maven+testng+htmlreport单元自动化测试

背景说明 为了可以在jenkins自动化运行单元测试的代码&#xff0c;所以使用maventestng的技术结合&#xff0c;达到手动或者定时去执行单元测试的代码&#xff0c;以便提高人工运行的自动化的效率。单元通过该方案也可以套用在httpclient框架去执行测试web api接口的自动化测试…

SILERGY(矽力杰)功率电子开关 SY6280AAC

SILERGY(矽力杰)功率电子开关 SY6280AAC Low Loss Power Distribution Switch SOT-5 Pacakge 2.4V ~ 5.5V (<6V) 0.6W Max. Current 2A Reverse blocking (no body diode) Programmable current limit ( Ilimits(A) 6800 / Rset(ohm). ) Application Circuit (Reco…

跳出Lambda表达式forEach()循环解决思路

背景 在一次需求开发时&#xff0c;发现使用Lambda的forEach()跳不出循环。如下示例代码&#xff0c;想在遍历满足条件时跳出循环。 public static void main(String[] args) {List<Integer> list Arrays.asList(1, 4, 5, 7, 9, 11);list.forEach(e -> {if (e % 2 …

质量属性案例-架构真题(二十一)

试题一 某电子商务公司升级会员与促销管理系统&#xff0c;向用户提交个性化服务&#xff0c;提高用户粘性。在项目建立之初&#xff0c;公司领导人一致认为目标是提升会员管理方式的灵活性&#xff0c;由于当前用户规模不大&#xff0c;用户简单&#xff0c;系统方面不需要做…

Python游戏开发-超级海盗!!!

开发环境配置 安装python环境后&#xff0c;下载pygame模块&#xff0c;使用如下命令 pip install pygame 注&#xff1a;该项目使用了一些新特性&#xff0c;使用3.10以上的版本 游戏项目介绍 游戏分为两个模块&#xff0c;分别是编辑模块和关卡模块&#xff0c;在编辑模…

Lesson5-2:OpenCV视频操作---视频追踪

学习目标 理解meanshift的原理知道camshift算法能够使用meanshift和Camshift进行目标追踪 1.meanshift 1.1原理 m e a n s h i f t meanshift meanshift算法的原理很简单。假设你有一堆点集&#xff0c;还有一个小的窗口&#xff0c;这个窗口可能是圆形的&#xff0c;现在你可…

CocosCreator3.8研究笔记(四)CocosCreator 脚本说明及使用(上)

在Cocos Creator中&#xff0c;脚本代码文件分为模块和插件两种方式&#xff1a; 模块一般就是项目的脚本&#xff0c;包含项目中创建的代码、引擎模块、第三方模块。 插件脚本&#xff0c;是指从 Cocos Creator 属性检查器中导入的插件&#xff0c;一般是引入第三方引入库文件…

PixelSNAIL论文代码学习(3)——自注意力机制的实现

文章目录 引言正文介绍自注意力机制的简单实现样例本文中的自注意力机制具体实现代码分析nn.nin函数的具体实现nn.causal_attention模块实现注意力模块实现代码完整实现代码使用pytorch实现因果注意力模块causal_atttention模块 问题 总结引用 引言 阅读了pixelSNAIL,很简短&a…

java八股文面试[多线程]——线程的状态

5种状态一般是针对传统的线程状态来说&#xff08;操作系统层面&#xff09; 6种状态&#xff1a;Java中给线程准备的 NEW&#xff1a;Thread对象被创建出来了&#xff0c;但是还没有执行start方法。 RUNNABLE&#xff1a;Thread对象调用了start方法&#xff0c;就为RUNNABLE状…

已解决“SyntaxError: invalid character in identifier“报错问题

本文摘要&#xff1a;本文已解决 Python FileNotFoundError 的相关报错问题&#xff0c;并总结提出了几种可用解决方案。同时结合人工智能GPT排除可能得隐患及错误。 &#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领…

Oracle数据库分页查询

方法一 方法二 方法一要比方法二效率要高很多&#xff0c;查询效率提高主要体现在WHERE ROWNUM < 40这个语句上。 这是由于CBO优化模式下&#xff0c;Oracle可以将外层的查询条件推到内层查询中&#xff0c;以提高内层查询的执行效率。方法一中&#xff0c;第二层的查询条件…

完善开发工具箱:免费开源社区版软件推荐

一、背景 工欲善其事必先利其器&#xff0c;在日常的IT工作中&#xff0c;好的工具软件是开发者日常工作中最重要的工具之一。然而&#xff0c;专业版的软件价格昂贵&#xff0c;对于小团队或个人开发者来说可能是一大负担。当然国内大家会普遍推荐使用破解版&#xff0c;小公…

Java【手撕滑动窗口】LeetCode 438. “字符串中所有异位词“, 图文详解思路分析 + 代码

文章目录 前言一、字符串中所有异位词1, 题目2, 思路分析2.1, 引入哈希表找出异位词2.2, 引入变量记录"有效字符的个数"2.3, left 右移维护窗口2.4, 总结核心步骤 3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; Ja…

bazel工程介绍和demo构建

参考官方示例项目&#xff1a;git clone https://github.com/bazelbuild/examples 项目结构 使用Bazel管理的项目一般包含以下几种Bazel相关的文件&#xff1a;WORKSPACE(同WORKSPACE.bazel)&#xff0c;BUILD(同BUILD.bazel)&#xff0c;.bzl 和 .bazelrc 等。 具体结构如下…

【洛谷】P3853 路标设置

原题链接&#xff1a;https://www.luogu.com.cn/problem/P3853 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 整体思路&#xff1a;二分答案 由题意知&#xff0c;公路上相邻路标的最大距离定义为该公路的“空旷指数”。在公路上增设一些路标&…

6. series对象及DataFrame对象知识总结

【目录】 文章目录 6. series对象及DataFrame对象知识总结1. 导入pandas库2. pd.Series创建Series对象2.1 data 列表2.2 data 字典 3. s1.index获取索引4. s1.value获取值5. pd.DataFrame()-创建DataFrame 对象5.1 data 列表5.2 data 嵌套列表5.3 data 字典 6. df[列索引]…

Linux安装MySQL5.7.26教程图解

0、准备工作 下载MySQL软件包 ①、官网下载&#xff1a;https://www.cnblogs.com/linu-x/p/15701479.html#_label6 ②、百度网盘下载&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;chao ③、文件说明 主机名 CentOS版本 MySQL版本 IP地址 test CentOS Linux …

AtCoder Beginner Contest 318

目录 A - Full Moon B - Overlapping sheets C - Blue Spring D - General Weighted Max Matching E - Sandwiches F - Octopus A - Full Moon #include<bits/stdc.h> using namespace std; const int N1e65; typedef long long ll ; const int maxv4e65; typedef …

nsq中diskqueue详解 - 第二篇

上一篇博客 nsq中diskqueue详解 - 第一篇_YZF_Kevin的博客-CSDN博客 中我们讲了diskqueue是什么&#xff0c;为什么需要它&#xff0c;它的整体架构流程&#xff0c;以及对外接口等等&#xff0c;如果你还没了解过&#xff0c;强烈建议先看一下&#xff0c;不然直接看这篇博客的…

AVR128单片机 USART通信控制发光二极管显示

一、系统方案 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 void port_init(void) { PORTA 0xFF; DDRA 0x00;//输入 PORTB 0xFF;//低电平 DDRB 0x00;//输入 PORTC 0xFF;//低电平 DDRC 0xFF;//输出 PORTE 0xFF; DDRE 0xfE;//输出 PO…