HDMI 输出实验

news2025/1/18 13:54:38

FPGA教程学习

第十四章 HDMI 输出实验


文章目录

  • FPGA教程学习
  • 前言
  • 实验原理
  • 实验过程
    • 程序设计
      • 时钟模块(video_pll)
      • 彩条产生模块(color_bar)
      • 配置数据查找表模块(lut_adv7511)
      • I2C Master 寄存器配置模块(i2c_config)
  • TODO
  • 总结
  • 参考


前言

  1. FPGA通过HDMI编码芯片输出彩条。

实验原理

开发板有一个HDMI编码芯片,ADV7511,将 24 位 RGB 编码输出 TMDS 差分信号。
本实验使用其将RGB24视频数据显示出来。
硬件原理图如下:
在这里插入图片描述
结合前面,从原理图(或者看手册,这里只是大致分析一下)上可以分析出:

  1. 编码输入是24位的数据,本实验是RGB
  2. 编码输出时TMDS 差分信号
  3. 编码芯片的配置接口是I2C
  4. HDMI接口上有I2C

实验过程

程序设计

在这里插入图片描述

时钟模块(video_pll)

负责产生一个100Mhz的时钟和一个1080P的148.5Mhz的像素时钟。
生成时钟 IP 的方法是点击 Project Manager目录下的 IP Catalog,再选择 FPGA Features and Design->Clocking->Clocking Wizard 图标。然后进行设置即可。

彩条产生模块(color_bar)

是产生 8 种颜色的 VGA 格式的彩条,彩条分别为白、黄、青、绿、紫、红、蓝和黑。产生分辨率为 1920x1080 刷新率为 60Hz 的彩条,也就是所谓的 1080P 的高清视频图像。

视频时序图:
在这里插入图片描述

模块要根据这个视频时序去看,用了几个寄存器来计数行场信号。
模块接口参数比较少,输入只有时钟和复位,其他都是输出。这里输出的时序是给编码芯片的。

module color_bar(
	input clk,            //像素时钟输入,1280x720@60P的像素时钟为74.25
	input rst,            //复位,高有效
	output hs,            //行同步、高有效
	output vs,            //场同步、高有效
	output de,            //数据有效
	output[7:0] rgb_r,    //像素数据、红色分量
	output[7:0] rgb_g,    //像素数据、绿色分量
	output[7:0] rgb_b     //像素数据、蓝色分量
);
//*************************************************************************\
//==========================================================================
//   Description:
//  彩条发生模块
//==========================================================================
//   Revision History:
//	Date		  By			Revision	Change Description
//--------------------------------------------------------------------------
//2013/5/7                     1.2         remove some warning
//2013/4/18                    1.1         vs timing
//2013/4/16	        		   1.0			Original
//*************************************************************************/
module color_bar(
	input clk,            //像素时钟输入,1280x720@60P的像素时钟为74.25
	input rst,            //复位,高有效
	output hs,            //行同步、高有效
	output vs,            //场同步、高有效
	output de,            //数据有效
	output[7:0] rgb_r,    //像素数据、红色分量
	output[7:0] rgb_g,    //像素数据、绿色分量
	output[7:0] rgb_b     //像素数据、蓝色分量
);
/*********视频时序参数定义******************************************/
//parameter H_ACTIVE = 16'd1280;  //行有效长度(像素时钟周期个数)
//parameter H_FP = 16'd110;       //行同步前肩长度
//parameter H_SYNC = 16'd40;      //行同步长度
//parameter H_BP = 16'd220;       //行同步后肩长度
//parameter V_ACTIVE = 16'd720;   //场有效长度(行的个数)
//parameter V_FP 	= 16'd5;        //场同步前肩长度
//parameter V_SYNC  = 16'd5;      //场同步长度
//parameter V_BP	= 16'd20;       //场同步后肩长度

parameter H_ACTIVE = 16'd1920;
parameter H_FP = 16'd88;
parameter H_SYNC = 16'd44;
parameter H_BP = 16'd148; 
parameter V_ACTIVE = 16'd1080;
parameter V_FP 	= 16'd4;
parameter V_SYNC  = 16'd5;
parameter V_BP	= 16'd36;
parameter H_TOTAL = H_ACTIVE + H_FP + H_SYNC + H_BP;//行总长度
parameter V_TOTAL = V_ACTIVE + V_FP + V_SYNC + V_BP;//场总长度
/*********彩条RGB color bar颜色参数定义*****************************/
parameter WHITE_R 		= 8'hff;
parameter WHITE_G 		= 8'hff;
parameter WHITE_B 		= 8'hff;
parameter YELLOW_R 		= 8'hff;
parameter YELLOW_G 		= 8'hff;
parameter YELLOW_B 		= 8'h00;                              	
parameter CYAN_R 		= 8'h00;
parameter CYAN_G 		= 8'hff;
parameter CYAN_B 		= 8'hff;                             	
parameter GREEN_R 		= 8'h00;
parameter GREEN_G 		= 8'hff;
parameter GREEN_B 		= 8'h00;
parameter MAGENTA_R 	= 8'hff;
parameter MAGENTA_G 	= 8'h00;
parameter MAGENTA_B 	= 8'hff;
parameter RED_R 		= 8'hff;
parameter RED_G 		= 8'h00;
parameter RED_B 		= 8'h00;
parameter BLUE_R 		= 8'h00;
parameter BLUE_G 		= 8'h00;
parameter BLUE_B 		= 8'hff;
parameter BLACK_R 		= 8'h00;
parameter BLACK_G 		= 8'h00;
parameter BLACK_B 		= 8'h00;
reg hs_reg;//定义一个寄存器,用于行同步
reg vs_reg;//定义一个寄存器,用户场同步
reg hs_reg_d0;//hs_reg一个时钟的延迟
              //所有以_d0、d1、d2等为后缀的均为某个寄存器的延迟
reg vs_reg_d0;//vs_reg一个时钟的延迟
reg[11:0] h_cnt;//用于行的计数器
reg[11:0] v_cnt;//用于场(帧)的计数器
reg[11:0] active_x;//有效图像的的坐标x
reg[11:0] active_y;//有效图像的坐标y
reg[7:0] rgb_r_reg;//像素数据r分量
reg[7:0] rgb_g_reg;//像素数据g分量
reg[7:0] rgb_b_reg;//像素数据b分量
reg h_active;//行图像有效
reg v_active;//场图像有效
wire video_active;//一帧内图像的有效区域h_active & v_active
reg video_active_d0;
assign hs = hs_reg_d0;
assign vs = vs_reg_d0;
assign video_active = h_active & v_active;
assign de = video_active_d0;
assign rgb_r = rgb_r_reg;
assign rgb_g = rgb_g_reg;
assign rgb_b = rgb_b_reg;



always@(posedge clk or posedge rst)
begin
	if(rst)
		begin
			hs_reg_d0 <= 1'b0;
			vs_reg_d0 <= 1'b0;
			video_active_d0 <= 1'b0;
		end
	else
		begin // 这个地方左侧的寄存器是hs,vs,de的输出,hs_reg和vs_reg有关系
			hs_reg_d0 <= hs_reg;
			vs_reg_d0 <= vs_reg;
			video_active_d0 <= video_active;
		end
end

// 行计数,每次记一行的时钟个数,也就是一行的第几个时钟
always@(posedge clk or posedge rst)
begin
	if(rst)
		h_cnt <= 12'd0;
	else if(h_cnt == H_TOTAL - 1)//行计数器到最大值清零
		h_cnt <= 12'd0;
	else
		h_cnt <= h_cnt + 12'd1;
end

// x坐标,像素坐标,当前肩+同步+后肩结束时,输出有效像素,x用来计数有效的图像数据,或者说是x的坐标
always@(posedge clk or posedge rst)
begin
	if(rst)
		active_x <= 12'd0;
	else if(h_cnt >= H_FP + H_SYNC + H_BP - 1)//计算图像的x坐标
		active_x <= h_cnt - (H_FP[11:0] + H_SYNC[11:0] + H_BP[11:0] - 12'd1);
	else
		active_x <= active_x;
end

// 场计数,或者说是行数计数,用来计数多少行,每当一行的前肩开始时就进行计数,到达最大进行清零
always@(posedge clk or posedge rst)
begin
	if(rst)
		v_cnt <= 12'd0;
	else if(h_cnt == H_FP  - 1)//在行数计算器为H_FP - 1的时候场计数器+1或清零
		if(v_cnt == V_TOTAL - 1)//场计数器到最大值了,清零
			v_cnt <= 12'd0;
		else
			v_cnt <= v_cnt + 12'd1;//没到最大值,+1
	else
		v_cnt <= v_cnt;
end

// 行同步信号的输出,从前肩开始有效,到达设定的值时结束
always@(posedge clk or posedge rst)
begin
	if(rst)
		hs_reg <= 1'b0;
	else if(h_cnt == H_FP - 1)//行同步开始了...
		hs_reg <= 1'b1;
	else if(h_cnt == H_FP + H_SYNC - 1)//行同步这时候要结束了
		hs_reg <= 1'b0;
	else
		hs_reg <= hs_reg;
end

// 行数据有效信号,在一行前肩+同步+后肩内为低,图像数据有效时为高
always@(posedge clk or posedge rst)
begin
	if(rst)
		h_active <= 1'b0;
	else if(h_cnt == H_FP + H_SYNC + H_BP - 1)
		h_active <= 1'b1;
	else if(h_cnt == H_TOTAL - 1)
		h_active <= 1'b0;
	else
		h_active <= h_active;
end

// 场同步信号,和行同步信号类似,从前肩开始有效,到达设定的值时结束
always@(posedge clk or posedge rst)
begin
	if(rst)
		vs_reg <= 1'd0;
	else if((v_cnt == V_FP - 1) && (h_cnt == H_FP - 1))
		vs_reg <= 1'b1;
	else if((v_cnt == V_FP + V_SYNC - 1) && (h_cnt == H_FP - 1))
		vs_reg <= 1'b0;	
	else
		vs_reg <= vs_reg;
end

// 场数据有效信号,在前肩+同步+后肩内为低,图像数据有效时为高,h_active和v_active共同用来指示数据是否有效,作为数据使能信号DE
always@(posedge clk or posedge rst)
begin
	if(rst)
		v_active <= 1'd0;
	else if((v_cnt == V_FP + V_SYNC + V_BP - 1) && (h_cnt == H_FP - 1))
		v_active <= 1'b1;
	else if((v_cnt == V_TOTAL - 1) && (h_cnt == H_FP - 1))
		v_active <= 1'b0;		
	else
		v_active <= v_active;
end

// 根据行坐标输出特定的像素值
always@(posedge clk or posedge rst)
begin
	if(rst)
		begin
			rgb_r_reg <= 8'h00;
			rgb_g_reg <= 8'h00;
			rgb_b_reg <= 8'h00;
		end
	else if(video_active)
		if(active_x == 12'd0)
			begin
				rgb_r_reg <= WHITE_R;
				rgb_g_reg <= WHITE_G;
				rgb_b_reg <= WHITE_B;
			end
		else if(active_x == (H_ACTIVE/8) * 1)
			begin
				rgb_r_reg <= YELLOW_R;
				rgb_g_reg <= YELLOW_G;
				rgb_b_reg <= YELLOW_B;
			end			
		else if(active_x == (H_ACTIVE/8) * 2)
			begin
				rgb_r_reg <= CYAN_R;
				rgb_g_reg <= CYAN_G;
				rgb_b_reg <= CYAN_B;
			end
		else if(active_x == (H_ACTIVE/8) * 3)
			begin
				rgb_r_reg <= GREEN_R;
				rgb_g_reg <= GREEN_G;
				rgb_b_reg <= GREEN_B;
			end
		else if(active_x == (H_ACTIVE/8) * 4)
			begin
				rgb_r_reg <= MAGENTA_R;
				rgb_g_reg <= MAGENTA_G;
				rgb_b_reg <= MAGENTA_B;
			end
		else if(active_x == (H_ACTIVE/8) * 5)
			begin
				rgb_r_reg <= RED_R;
				rgb_g_reg <= RED_G;
				rgb_b_reg <= RED_B;
			end
		else if(active_x == (H_ACTIVE/8) * 6)
			begin
				rgb_r_reg <= BLUE_R;
				rgb_g_reg <= BLUE_G;
				rgb_b_reg <= BLUE_B;
			end	
		else if(active_x == (H_ACTIVE/8) * 7)
			begin
				rgb_r_reg <= BLACK_R;
				rgb_g_reg <= BLACK_G;
				rgb_b_reg <= BLACK_B;
			end
		else
			begin
				rgb_r_reg <= rgb_r_reg;
				rgb_g_reg <= rgb_g_reg;
				rgb_b_reg <= rgb_b_reg;
			end			
	else
		begin
			rgb_r_reg <= 8'h00;
			rgb_g_reg <= 8'h00;
			rgb_b_reg <= 8'h00;
		end
end

endmodule 

配置数据查找表模块(lut_adv7511)

这个模块就是根据输入的下标输出设定好的值。


module lut_adv7511(
	input[9:0]             lut_index, // Look-up table index address
	output reg[31:0]       lut_data   // I2C device address register address register data
);

always@(*)
begin
	case(lut_index)
		//To be compatible with the 16bit register address, add 8'h00
		8'd0 	: 	lut_data	<= 	{8'h72,24'h004100};   //16'h4110; 	
		8'd1    : 	lut_data	<= 	{8'h72,24'h00d6c0};			
		8'd2 	: 	lut_data	<= 	{8'h72,24'h005512};			
		8'd3 	: 	lut_data	<= 	{8'h72,24'h001500};  //input id = 0x0 = 0000 = 24 bit RGB 4:4:4 or YCbCr 4:4:4 (separate syncs)
		8'd4    : 	lut_data	<= 	{8'h72,24'h00d03c};
		8'd5    : 	lut_data	<= 	{8'h72,24'h00af04};	
		8'd6    : 	lut_data	<= 	{8'h72,24'h004c04};	
		8'd7    : 	lut_data	<= 	{8'h72,24'h004000};		
		8'd8 	: 	lut_data	<= 	{8'h72,24'h009803};
		8'd9 	: 	lut_data	<= 	{8'h72,24'h009ae0};	
		8'd10	: 	lut_data	<=	{8'h72,24'h009c30};	
		8'd11	: 	lut_data	<= 	{8'h72,24'h009d61};	
		8'd12	: 	lut_data	<= 	{8'h72,24'h00a2a4};	
		8'd13	: 	lut_data	<= 	{8'h72,24'h00a3a4};	
		8'd14	: 	lut_data	<= 	{8'h72,24'h00e0d0};	
		8'd15	: 	lut_data	<= 	{8'h72,24'h00f900};
		
		default:lut_data <= {8'hff,16'hffff,8'hff};
	endcase
end

endmodule 

I2C Master 寄存器配置模块(i2c_config)

这个模块使用了查找表模块,输出对应的下标,将查找的数据作为输入。然后这里还有一大堆使用I2C读写的代码,以后再看。

module i2c_config(
	input              rst,
	input              clk,
	input[15:0]        clk_div_cnt,
	input              i2c_addr_2byte,
	output reg[9:0]    lut_index,
	input[7:0]         lut_dev_addr,
	input[15:0]        lut_reg_addr,
	input[7:0]         lut_reg_data,
	output reg         error,
	output             done,
	inout              i2c_scl,
	inout              i2c_sda
);

TODO

  1. 分析I2C读写代码
  2. 了解视频时序
  3. 查看编码芯片数据手册

总结

本实验通过使用I2C配置编码芯片,构建模拟图像输出视频时序模块,完成了使用HDMI输出模拟图像(彩条)的功能。通过本次实验,了解了HDMI输出、视频时序、I2C读写的一些知识点。HDMI输出的是差分信号,芯片输出是可能需要编码芯片进行编码,不能够直接输出。视频时序中有前肩、后肩、同步等术语,行场信号是一个重要的知识点,要熟悉行场信号的构造。I2C是一个常用的配置接口,实验中的编码芯片由I2C进行配置,HDMI接口上也有一个。

参考

  1. 8k,4k,2k视频时序参数分享
  2. HDMI中的视频时序分析
  3. 基于FPGA的视频时序生成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/967331.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

692. 前K个高频单词

题目来源&#xff1a;力扣 题目描述&#xff1a; 给定一个单词列表 words 和一个整数 k &#xff0c;返回前 k 个出现次数最多的单词。 返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率&#xff0c; 按字典顺序 排序。 示例 1&#xff1a; 输入:…

css transition 指南

css transition 指南 在本文中&#xff0c;我们将深入了解 CSS transition&#xff0c;以及如何使用它们来创建丰富、精美的动画。 基本原理 我们创建动画时通常需要一些动画相关的 CSS。 下面是一个按钮在悬停时移动但没有动画的示例&#xff1a; <button class"…

【斗罗Ⅱ】最强武魂揭秘,98级玄老、95级言少哲神兽级武魂曝光

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析【绝世唐门】 在斗罗大陆动画绝世唐门中&#xff0c;98级玄老已经登场&#xff0c;他是一个很随意的老人&#xff0c;乍眼一看&#xff0c;似乎是一个邋里邋遢、好吃懒做的人&#xff0c;但是实际上他却是史莱克学院重量级…

精心整理了优秀的GitHub开源项目,包含前端、后端、AI人工智能、游戏、黑客工具、网络工具、AI医疗等等,空闲的时候方便看看提高自己的视野

精心整理了优秀的GitHub开源项目&#xff0c;包含前端、后端、AI人工智能、游戏、黑客工具、网络工具、AI医疗等等&#xff0c;空闲的时候方便看看提高自己的视野。 刚开源就变成新星的 igl&#xff0c;不仅获得了 2k star&#xff0c;也能提高你开发游戏的效率&#xff0c;摆…

自建音乐服务器Navidrome之二

6 准备音乐资源 可选 Last.fm Lastfm是 Audioscrobbler 音乐引擎设计团队的旗舰产品&#xff0c;以英国为总部的网络电台和音乐社区。有遍布232个国家超过1500万的活跃听众。据说有6亿音乐资源。 docker-compose.yml 配置 Navidrome 可以从 Last.fm 和 Spotify 获取专辑信息和…

性能测试 —— Jmeter 命令行详细

我们在启动Jmeter时 会看见&#xff1a;Don’t use GUI mode for load testing !, only for Test creation and Test debugging.For load testing, use CLI Mode (was NON GUI) 这句话的意思就是说&#xff0c;不要使用gui模式进行负载测试&#xff0c;gui模式仅仅是创建脚本…

涂鸦智能携手亚马逊云科技 共建“联合安全实验室” 为IoT发展护航

2023年8月31日&#xff0c;全球化IoT开发者平台涂鸦智能&#xff08;NYSE: TUYA&#xff0c;HKEX: 2391&#xff09;在“2023亚马逊云科技re:Inforce中国站”大会宣布与全球领先的云计算公司亚马逊云科技共同成立“联合安全实验室”&#xff0c;旨在加强IoT行业的安全合规能力与…

管理类联考——逻辑——形式逻辑——汇总篇——知识点突破——论证逻辑——假设——否定代入

角度——原理 可以用“否定代入法”验证疑似选项 由于假设是使推理成立的一个必要条件&#xff0c;根据必要条件的性质若Р是S的必要条件&#xff0c;那么┐P → ┐S可知&#xff0c;如果一个推理在没有某一条件时&#xff0c;这个推理必然不成立&#xff0c;那么这个条件就是…

41.岛屿数量(第四期模拟笔试)(BFS练习题)

题目&#xff1a; 给定一个 m 行 n 列的二维地图&#xff0c;初始化每个单元格都是海洋&#xff0c;二维地图外也全是海洋。 操作 addLand 会将单元格&#xff08;col, row&#xff09;变为陆地。 定义一系列相连的被海洋包围的陆地为岛屿&#xff0c; 横向相邻或者纵向相连的…

%temp%

C:\Users\ADMINI~1\AppData\Local\Temp

springboot~静态资源配置

springboot~静态资源配置 springboot的静态资源默认路径给静态资源请求加前缀指定静态资源加载的包欢迎页 springboot的静态资源默认路径 请求效果见图 给静态资源请求加前缀 有时需要用拦截器对某些请求进行拦截后再处理相关的业务代码&#xff0c;此时我们就要对请求进行…

2023年智能算法之淘金优化器,MATLAB代码免费获取

今天为大家带来一期淘金优化算法(Gold rush optimizer.,GRO)。 GRO算法是受淘金热启发&#xff0c;模拟了淘金者在淘金热时期如何利用淘金的三个关键概念进行淘金&#xff1a;迁移、协作和淘金。 原理详解 ①金矿勘探阶段&#xff1a; 与大多数智能算法相似&#xff0c;就是随机…

MyBatis学习

一、Mybatis使用 1、新建mybatis配置文件 <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE configurationPUBLIC "-//mybatis.org//DTD Config 3.0//EN""http://mybatis.org/dtd/mybatis-3-config.dtd"> <configu…

由于cpu cache line机制在共享原子数据操作上带来的硬件干扰对多线程机制的性能影响

由于cpu cache line机制在共享原子数据操作上带来的硬件干扰会对对多线程性能造成影响。例如不同的原子数据&#xff0c;位于同一个cpu cache line&#xff0c;这时候一个处理器读取这个cpu cache line这段数据的时候&#xff0c;就会控制这段数据的所有权&#xff0c;其他想要…

WorkManager的基本使用

目录 一、WorkManager概述1. WorkManager的作用&#xff1a;2. WorkManager的各个角色 二、依赖库的导入三、WorkManager几种基本使用1. 单一任务的执行2. 数据 互相传递3. 多个任务 顺序执行4. 重复执行后台任务5. 约束条件6. 证明 app被杀掉之后&#xff0c;还在后台执行 四、…

中小企业常用的 IT 项目管理软件有哪些?

越热门&#xff0c;越贵的IT项目管理软件越好用吗&#xff1f;对于预算有限的中小型企业来说&#xff0c;如何选择一款适合自己的项目管理工具着实是个头疼的问题。 首先适用于中小型企业使用的 IT 项目管理软件需要具备哪些特点呢&#xff1f; 1、简单易用&#xff1a;中小企…

note_前端框架Vue的安装和简单入门(Windows 11)

1. Vue安装 (1) 下载安装node.js和npm # 下载msi安装包 https://nodejs.org/en# 点击安装包&#xff0c;按提示安装 # 默认安装nodejs, npm, 在线文档; PATH配置# 确认安装是否成功&#xff0c;在dos中输入 node -v # 验证nodejs是否安装成功 npm -v # 验证nodejs包管…

DSP应用技术学习笔记——第一讲

如果一项选择被分解为两个连续的选择&#xff0c;则原来的信息量H应该等于分解后的各个信息量H的加权和 DSP概念 DSP既是数字信号处理&#xff08;Digital Signal Processings&#xff09;的缩写也是数字信号处理器&#xff08;Digital Signal Processor&#xff09;的缩写。…

Lesson4-3:OpenCV图像特征提取与描述---SIFT/SURF算法

学习目标 理解 S I F T / S U R F SIFT/SURF SIFT/SURF算法的原理&#xff0c;能够使用 S I F T / S U R F SIFT/SURF SIFT/SURF进行关键点的检测 SIFT/SURF算法 1.1 SIFT原理 前面两节我们介绍了 H a r r i s Harris Harris和 S h i − T o m a s i Shi-Tomasi Shi−Tomasi…

城市白模三维重建

收费工具&#xff0c;学生党勿扰&#xff0c;闹眼子当勿扰 收费金额&#xff1a;2000元&#xff0c;不能开发票 1 概述 几个月前&#xff0c;一家小公司找我帮忙给他们开发一个程序&#xff0c;可以将一个城市进行白模的三维重建。 报酬大约5K。经过不懈的努力&#xff0c;终于…