【机器学习】线性回归

news2025/1/19 23:01:33

Model Representation

    • 1、问题描述
    • 2、表示说明
    • 3、数据绘图
    • 4、模型函数
    • 5、预测
    • 总结
    • 附录

1、问题描述

一套 1000 平方英尺 (sqft) 的房屋售价为300,000美元,一套 2000 平方英尺的房屋售价为500,000美元。这两点将构成我们的数据或训练集。面积单位为 1000 平方英尺,价格单位为 1000 美元。

Size (1000 sqft)Price (1000s of dollars)
1.0300
2.0500

希望通过这两个点拟合线性回归模型,以便可以预测其他房屋的价格。例如,面积为 1200 平方英尺的房屋价格是多少。

首先导入所需要的库

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')

以下代码来创建x_train和y_train变量。数据存储在一维 NumPy 数组中。

# x_train is the input variable (size in 1000 square feet)
# y_train is the target (price in 1000s of dollars)
x_train = np.array([1.0, 2.0])
y_train = np.array([300.0, 500.0])
print(f"x_train = {x_train}")
print(f"y_train = {y_train}")

2、表示说明

使用 m 来表示训练样本的数量。 (x ( i ) ^{(i)} (i), y ( i ) ^{(i)} (i)) 表示第 i 个训练样本。由于 Python 是零索引的,(x ( 0 ) ^{(0)} (0), y ( 0 ) ^{(0)} (0)) 是 (1.0, 300.0) , (x ( 1 ) ^{(1)} (1), y ( 1 ) ^{(1)} (1)) 是 (2.0, 500.0).

3、数据绘图

使用 matplotlib 库中的scatter()函数绘制这两个点。 其中,函数参数markerc 将点显示为红叉(默认为蓝点)。使用matplotlib库中的其他函数来设置要显示的标题和标签。

# Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r')
# Set the title
plt.title("Housing Prices")
# Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
# Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt.show()

在这里插入图片描述

4、模型函数

线性回归的模型函数(这是一个从 x 映射到 y 的函数)可以表示为 f w , b ( x ( i ) ) = w x ( i ) + b (1) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{1} fw,b(x(i))=wx(i)+b(1)

计算 f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)) 的值,可以将每个数据点显示地写为:

对于 x ( 0 ) x^{(0)} x(0), f_wb = w * x[0] + b
对于 x ( 1 ) x^{(1)} x(1), f_wb = w * x[1] + b

对于大量的数据点,这可能会变得笨拙且重复。 因此,可以在for 循环中计算输出,如下面的函数compute_model_output 所示。

def compute_model_output(x, w, b):
    """
    Computes the prediction of a linear model
    Args:
      x (ndarray (m,)): Data, m examples 
      w,b (scalar)    : model parameters  
    Returns
      y (ndarray (m,)): target values
    """
    m = x.shape[0]
    f_wb = np.zeros(m)
    for i in range(m):
        f_wb[i] = w * x[i] + b
        
    return f_wb

调用 compute_model_output 函数并绘制输出

w = 100
b = 100

tmp_f_wb = compute_model_output(x_train, w, b,)

# Plot our model prediction
plt.plot(x_train, tmp_f_wb, c='b',label='Our Prediction')

# Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r',label='Actual Values')

# Set the title
plt.title("Housing Prices")
# Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
# Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt.legend()
plt.show()

在这里插入图片描述
很明显, w = 100 w = 100 w=100 b = 100 b = 100 b=100 不会产生适合数据的直线。

根据学过的数学知识,可以容易求出 w = 200 w = 200 w=200 b = 100 b = 100 b=100

5、预测

现在我们已经有了一个模型,可以用它来做出房屋价格的预测。来预测一下 1200 平方英尺的房子的价格。由于面积单位为 1000 平方英尺,所以 x x x 是1.2。

w = 200                         
b = 100    
x_i = 1.2
cost_1200sqft = w * x_i + b    

print(f"${cost_1200sqft:.0f} thousand dollars")

输出的结果是:$340 thousand dollars

总结

  • 线性回归建立一个特征和目标之间关系的模型
    • 在上面的例子中,特征是房屋面积,目标是房价。
    • 对于简单线性回归,模型有两个参数 w w w b b b ,其值使用训练数据进行拟合。
    • 一旦确定了模型的参数,该模型就可以用于对新数据进行预测。

附录

deeplearning.mplstyle 源码:

# see https://matplotlib.org/stable/tutorials/introductory/customizing.html
lines.linewidth: 4
lines.solid_capstyle: butt

legend.fancybox: true

# Verdana" for non-math text,
# Cambria Math

#Blue (Crayon-Aqua) 0096FF
#Dark Red C00000
#Orange (Apple Orange) FF9300
#Black 000000
#Magenta FF40FF
#Purple 7030A0

axes.prop_cycle: cycler('color', ['0096FF', 'FF9300', 'FF40FF', '7030A0', 'C00000'])
#axes.facecolor: f0f0f0 # grey
axes.facecolor: ffffff  # white
axes.labelsize: large
axes.axisbelow: true
axes.grid: False
axes.edgecolor: f0f0f0
axes.linewidth: 3.0
axes.titlesize: x-large

patch.edgecolor: f0f0f0
patch.linewidth: 0.5

svg.fonttype: path

grid.linestyle: -
grid.linewidth: 1.0
grid.color: cbcbcb

xtick.major.size: 0
xtick.minor.size: 0
ytick.major.size: 0
ytick.minor.size: 0

savefig.edgecolor: f0f0f0
savefig.facecolor: f0f0f0

#figure.subplot.left: 0.08
#figure.subplot.right: 0.95
#figure.subplot.bottom: 0.07

#figure.facecolor: f0f0f0  # grey
figure.facecolor: ffffff  # white

## ***************************************************************************
## * FONT                                                                    *
## ***************************************************************************
## The font properties used by `text.Text`.
## See https://matplotlib.org/api/font_manager_api.html for more information
## on font properties.  The 6 font properties used for font matching are
## given below with their default values.
##
## The font.family property can take either a concrete font name (not supported
## when rendering text with usetex), or one of the following five generic
## values:
##     - 'serif' (e.g., Times),
##     - 'sans-serif' (e.g., Helvetica),
##     - 'cursive' (e.g., Zapf-Chancery),
##     - 'fantasy' (e.g., Western), and
##     - 'monospace' (e.g., Courier).
## Each of these values has a corresponding default list of font names
## (font.serif, etc.); the first available font in the list is used.  Note that
## for font.serif, font.sans-serif, and font.monospace, the first element of
## the list (a DejaVu font) will always be used because DejaVu is shipped with
## Matplotlib and is thus guaranteed to be available; the other entries are
## left as examples of other possible values.
##
## The font.style property has three values: normal (or roman), italic
## or oblique.  The oblique style will be used for italic, if it is not
## present.
##
## The font.variant property has two values: normal or small-caps.  For
## TrueType fonts, which are scalable fonts, small-caps is equivalent
## to using a font size of 'smaller', or about 83%% of the current font
## size.
##
## The font.weight property has effectively 13 values: normal, bold,
## bolder, lighter, 100, 200, 300, ..., 900.  Normal is the same as
## 400, and bold is 700.  bolder and lighter are relative values with
## respect to the current weight.
##
## The font.stretch property has 11 values: ultra-condensed,
## extra-condensed, condensed, semi-condensed, normal, semi-expanded,
## expanded, extra-expanded, ultra-expanded, wider, and narrower.  This
## property is not currently implemented.
##
## The font.size property is the default font size for text, given in points.
## 10 pt is the standard value.
##
## Note that font.size controls default text sizes.  To configure
## special text sizes tick labels, axes, labels, title, etc., see the rc
## settings for axes and ticks.  Special text sizes can be defined
## relative to font.size, using the following values: xx-small, x-small,
## small, medium, large, x-large, xx-large, larger, or smaller


font.family:  sans-serif
font.style:   normal
font.variant: normal
font.weight:  normal
font.stretch: normal
font.size:    8.0

font.serif:      DejaVu Serif, Bitstream Vera Serif, Computer Modern Roman, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
font.sans-serif: Verdana, DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans Serif, Lucida Grande, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
font.cursive:    Apple Chancery, Textile, Zapf Chancery, Sand, Script MT, Felipa, Comic Neue, Comic Sans MS, cursive
font.fantasy:    Chicago, Charcoal, Impact, Western, Humor Sans, xkcd, fantasy
font.monospace:  DejaVu Sans Mono, Bitstream Vera Sans Mono, Computer Modern Typewriter, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace


## ***************************************************************************
## * TEXT                                                                    *
## ***************************************************************************
## The text properties used by `text.Text`.
## See https://matplotlib.org/api/artist_api.html#module-matplotlib.text
## for more information on text properties
#text.color: black

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/967010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Swift 如何从图片数据(Data)检测原图片类型?

功能需求 如果我们之前把图片对应的数据(Data)保持在内存或数据库中,那么怎么从 Data 对象检测出原来图片的类型呢? 如上图所示:我们将 11 张不同类型的图片转换为 Data 数据,然后从 Data 对象正确检测出了原图片类型。 目前,我们的代码可以检测出 jpeg(jpg), tiff,…

WebRTC 安全之一

WebRTC 的安全需要满足三个基本需求 Authentication 用户访问需要认证Authorization 用户访问需要授权Audit 用户的访问应该可被追踪和审查 其中前两项也可以归结为 CIA Confidentiality 机密性:信息需要保密, 访问权限也需要控制Integrity 完整性&#…

Spring Cloud集成Nacos配置中心/注册中心

Spring Cloud版本 2021.0.5 Spring Cloud Alibaba版本 2021.0.5.0 Spring Boot版本 2.7.10 pom文件 需要放在依赖管理的pom文件 <dependencyManagement><dependencies><!-- spring boot依赖 --><dependency><groupId>org.springframewor…

2023-9-3 试除法判定质数

题目链接&#xff1a;试除法判定质数 #include <iostream>using namespace std;bool is_prime(int n) {if(n < 2) return false;for(int i 2; i < n / i; i){if(n % i 0) return false;}return true; }int main() {int n;cin >> n;while(n--){int x;cin &g…

git大文件推送报错

报错信息 不多掰扯&#xff0c;直接上报错信息和截图 Delta compression using up to 8 threadsRPC failde; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large从以上的报错信息不难看出推送仓库的时候&#xff0c;请求体过大&#xff0c;为…

C++ do...while 循环

不像 for 和 while 循环&#xff0c;它们是在循环头部测试循环条件。do…while 循环是在循环的尾部检查它的条件。 do…while 循环与 while 循环类似&#xff0c;但是 do…while 循环会确保至少执行一次循环。 语法 C 中 do…while 循环的语法&#xff1a; do {statement(s…

AD16 基础应用技巧(一些 “偏好“ 设置)

1. 修改铺铜后自动更新铺铜 AD16 铺铜 复制 自动变形 偏好设置 将【DXP】中的【参数选择】。 将【PCB Editor】中的【General】&#xff0c;然后勾选上【Repour Polygons After Modification】。 2. PCB直角走线处理与T型滴泪 一些没用的AD技巧——AD PCB直角走线处理与…

iOS练手项目知识点汇总

基础理解篇 Objective-C是一种面向对象的编程语言&#xff0c;它支持元编程。元编程是指编写程序来生成或操纵其他程序的技术。 Objective-C中&#xff0c;元编程可以使用Objective-C的动态特性来实现。例如可以使用Objective-C的运行时函数来动态地创建类、添加属性和方法等等…

给视频添加背景图片,让它们更具魅力!

想要让你的视频更加出彩吗&#xff1f;给它们添加背景图片是不错的选择&#xff01;但是&#xff0c;如何做到呢&#xff1f;不用担心&#xff0c;我们的视频剪辑高手可以帮助你轻松实现&#xff01;我们提供多种背景图片选择&#xff0c;你可以根据自己的喜好和需求进行选择。…

程序员自由创业周记#7:仲裁

没想到 没想到写的周记会有这么多人看&#xff0c;还能收到这么多陌生(或熟悉)朋友的真诚建议、鼓励、甚至是打赏&#xff0c;几乎所有的评论和私信我都认真的回复了&#xff0c;本想的是通过网友和朋友的监督坚定我创业的信念&#xff0c;有点外界压力也能迫使自己持续输出一…

P1886 滑动窗口 /【模板】(双端队列)+双端队列用法

例题 有一个长为 n 的序列 a&#xff0c;以及一个大小为 k 的窗口。现在这个从左边开始向右滑动&#xff0c;每次滑动一个单位&#xff0c;求出每次滑动后窗口中的最大值和最小值。 例如&#xff1a; The array is [1,3,−1,−3,5,3,6,7],and k3。 输入格式 输入一共有两行…

4. 虚拟机栈

4.1. 虚拟机栈概述 4.1.1. 虚拟机栈出现的背景 由于跨平台性的设计&#xff0c;Java的指令都是根据栈来设计的。不同平台CPU架构不同&#xff0c;所以不能设计为基于寄存器的。 优点是跨平台&#xff0c;指令集小&#xff0c;编译器容易实现&#xff0c;缺点是性能下降&…

WideDeep模型介绍

文章目录 1. Wide&Deep模型的记忆能力和泛化能力2. Wide&Deep模型的结构3. Wide&Deep模型的进化——Deep&Cross模型4. Wide&Deep模型的影响力 Wide&Deep模型是 记忆能力和 泛化能力的综合&#xff0c;是谷歌在2016年提出的。正如其名&#xff0c;Wid…

java运行程序流程

java运行程序流程 检查JDK环境 java -version 新建Java文件&#xff08;源文件&#xff09;Hello.java 打开记事本&#xff0c;输入 public class Hello {public static void main(String[] args) {System.out.println("Hello");} } 保存文件&#xff0c;把文件后缀…

C++极简内存泄露检测工具(34行代码实现)

工具特点 1 极度简单&#xff1a;34行代码实现&#xff0c;线程安全 2 入寝式检测&#xff1a;需要给现有重点怀疑的类添加一行入寝代码 3 只针对类类型&#xff1a;动态数组需要使用更为复杂的技术&#xff0c;不在检测能力范围之内。考虑到大部分C代码都以类实现代码&…

Python零基础超详细教程:字典(Dictionary)相关介绍使用

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! Python字典是另一种可变容器模型&#xff0c; 且可存储任意类型对象&#xff0c;如字符串、数字、元组等其他容器模型。 python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 一、创建字典 字典由键和对应值…

高数刷题笔记

任取一米奚落>0,存在德尔塔...&#xff0c;0<|x-x0|<德尔塔 不同点是这个不是|x-x0|趋近与哪一个小范围&#xff0c;而是x趋近与大范围 极限的本质就是逼近&#xff0c;二者都是在确定要逼近到什么程度&#xff01;&#xff01;&#xff01; 放缩 我们要凑出|x-x0|的…

python技术面试题合集(二)

python技术面试题 1、简述django FBV和CBV FBV是基于函数编程&#xff0c;CBV是基于类编程&#xff0c;本质上也是FBV编程&#xff0c;在Djanog中使用CBV&#xff0c;则需要继承View类&#xff0c;在路由中指定as_view函数&#xff0c;返回的还是一个函数 在DRF中的使用的就是…

docker笔记3 Docker常规安装

1.安装tomcat docker hub上面查找tomcat镜像 docker search tomcat 从docker hub上拉取tomcat镜像到本地 docker pull tomcat docker images查看是否有拉取到的tomcat 使用tomcat镜像创建容器实例(也叫运行镜像) docker run -it -p 8080:8080 tomcat -p 小写&#xff0c;主…

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书杭州师范大学图书馆

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书杭州师范大学图书馆