超图嵌入论文阅读2:超图神经网络

news2025/1/24 11:49:05

超图嵌入论文阅读2:超图神经网络

原文:Hypergraph Neural Networks ——AAAI2019(CCF-A)

源码:https://github.com/iMoonLab/HGNN 500+star

概述

贡献:用于数据表示学习的超图神经网络 (HGNN) 框架,对超图结构中的高阶数据相关性进行编码

  • 定义超边卷积来处理表示学习过程中的数据相关性

  • 够学习考虑高阶数据结构的隐藏层表示,是一个通用框架

    ——GCN可以看作是 HGNN 的一个特例,其中简单图中的边可以被视为仅连接两个顶点的 2 阶超边

  • 引文图、图像识别数据集上实验,优于图卷积网络(GCN)

  • others:在处理多模态数据时具有优势

背景

图卷积能够使用神经网络模型对不同输入数据的图结构进行编码,用于无监督、半监督、监督学习,在表示学习方面显示出优越性。传统图卷积网络,使用成对连接,难以表征多模态数据:

  1. 数据相关性可能比成对关系更复杂,很难用图结构建模
  2. 数据表示往往是多模态

——传统的图结构具有规定数据相关性的局限性,这限制了图卷积网络的应用。

超图

超图优势

  • 超图可以使用其可变度数超边高阶数据相关性(超出成对连接)进行编码

  • 使用超图的灵活性超边很容易扩展到多模态和异构数据表示:

    如:可以通过组合邻接矩阵来联合使用多模态数据来生成超图

——图已被用于许多计算机视觉任务,例如分类和检索任务

超图问题:传统的超图学习方法计算复杂度和存储成本较高,难以广泛应用

相关研究

  1. 超图学习

    前期发展

    • 2007首次引入,转导推理旨在最小化超图上连接更强的顶点之间的标签差异
    • 2009进一步用于视频对象分割
    • 2010对图像关系进行建模,并进行转导推理过程进行图像排序

    注意力机制引入:

    • 2013对权重进行正则化
    • 2008提出假设:高度相关的超边应该具有相似的权重

    多模态

    • 2012引入多超图结构为不同的子超图分配权重
  2. 图神经网络

    前期发展

    • 2005 2009应用循环神经网络来处理图

    谱方法

    • 2014第一个图 CNN:图拉普拉斯特征基
    • 2015谱滤波器可以使用平滑系数参数化
    • 2016图拉普拉斯算子的切比雪夫扩展进一步用于近似谱滤波器
    • 2017chebyshev 多项式被简化为 1 阶多项式,形成一个有效的逐层传播模型

    空间方法

    • 2016使用转移矩阵的幂来定义节点的邻域
    • 2017使用高斯混合模型形式的局部路径算子来概括空间域中的卷积
    • 2018注意力机制被引入图以构建基于注意力的架构,以在图上执行节点分类任务

HGNN

超图学习

基础知识(略):

与简单图不同,超图中的超边连接两个或多个顶点。超图定义为 G = (V, E, W)

超图 G 可以用 |V| × |E|关联矩阵 H 表示
h ( v , e ) = { 1 , if  v ∈ e 0 , if  v ∉ e , h(v,e)=\left\{\begin{array}{l} 1, \text{if} \space v \in e \\ 0, \text{if} \space v \notin e, \\\end{array}\right. h(v,e)={1,if ve0,if v/e,
d ( v ) = ∑ e ∈ E ω ( e ) h ( v , e ) d(v) =∑_{e∈E} ω(e)h(v, e) d(v)=eEω(e)h(v,e) δ ( e ) = ∑ v ∈ V h ( v , e ) δ(e) = ∑_{v∈V} h(v, e) δ(e)=vVh(v,e) D e \mathbf{D}_e De D v \mathbf{D}_v Dv 分别表示边度和顶点度的对角矩阵

超图节点分类问题:节点标签应该在超图结构上平滑

——用以下正则化框架描述:
arg ⁡ min ⁡ f { R e m p ( f ) + Ω ( f ) } \arg \min_f \{\mathcal{R}_{emp}(f)+\Omega(f)\} argfmin{Remp(f)+Ω(f)}
其中 Ω ( f ) \Omega(f) Ω(f) 是超图上的正则化, R e m p ( f ) \mathcal{R}_{emp}(f) Remp(f) 表示监督经验损失, f ( ⋅ ) f (·) f() 是分类函数。正则化 Ω ( f ) \Omega(f) Ω(f)定义为:
Ω ( f ) = 1 2 ∑ e ∈ ε ∑ { u , v } ∈ V w ( e ) h ( u , e ) h ( v , e ) δ ( e ) ( f ( u ) d ( u ) − f ( v ) d ( v ) ) 2 \Omega(f)=\frac{1}{2} \sum_{e \in \varepsilon} \sum_{\{u,v\}\in \mathcal{V}} \frac{w(e)h(u,e)h(v,e)}{\delta(e)} \left(\frac{f(u)}{\sqrt{d(u)}}-\frac{f(v)}{\sqrt{d(v)}}\right)^2 Ω(f)=21eε{u,v}Vδ(e)w(e)h(u,e)h(v,e)(d(u) f(u)d(v) f(v))2
我们令 Θ = D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 \mathbf \Theta=\mathbf D_v^{-1/2}\mathbf H \mathbf W \mathbf D_e^{-1}\mathbf H^{\mathsf T}\mathbf D_v^{-1/2} Θ=Dv1/2HWDe1HTDv1/2 Δ = I − Θ \mathbf \Delta = \mathbf I -\mathbf \Theta Δ=IΘ 归一化 Ω ( f ) \Omega(f) Ω(f) 可以写成:
Ω ( f ) = f T Δ \Omega(f)=f^{\text T} \mathbf \Delta Ω(f)=fTΔ
其中 Δ \mathbf \Delta Δ 是半正定的,通常称为超图拉普拉斯算子。

超图谱卷积

给定一个具有 n 个顶点的超图,拉普拉斯算子 Δ \mathbf \Delta Δ 是半正定的。对其进行特征分解 Δ = Φ Λ Φ T \mathbf \Delta =\mathbf \Phi \mathbf \Lambda \mathbf \Phi^{\mathsf T} Δ=ΦΛΦT 可得到正交特征向量 Φ = diag ( ϕ 1 , . . . , ϕ n ) \mathbf \Phi = \text{diag}(\phi_1,..., \phi_n) Φ=diag(ϕ1,...,ϕn) 和对角矩阵 Λ = diag ( λ 1 , . . . , λ n ) \mathbf \Lambda =\text{diag}(\lambda_1,..., \lambda_n) Λ=diag(λ1,...,λn) 对应非负特征值。

信号 x = ( x 1 , . . . , x n ) \text x = (x_1,..., x_n) x=(x1,...,xn) 在超图中定义为 x ^ = Φ T x \hat {\text x}=\mathbf \Phi^{\mathsf T}\text x x^=ΦTx ,其中特征向量被视为傅里叶基,特征值被解释为频率。信号x滤波器g的谱卷积可以表示为:
g ⋆ x = Φ ( ( Φ T g ) ⊙ ( Φ T x ) ) = Φ g ( Λ ) Φ T x , \text g\star \text x=\mathbf \Phi((\mathbf \Phi^{\mathsf T}\text g)\odot (\mathbf \Phi^{\mathsf T} \text x))=\mathbf \Phi g(\mathbf \Lambda) \mathbf \Phi^{\mathsf T}\text x, gx=Φ((ΦTg)(ΦTx))=Φg(Λ)ΦTx,

  • ⊙ \odot 表示逐元素的Hadamard乘积
  • g ( Λ ) = diag ( g ( λ 1 ) , . . . , g ( λ n ) ) g(\mathbf \Lambda)=\text{diag}(\text g(\lambda_1),...,\text g(\lambda_n)) g(Λ)=diag(g(λ1),...,g(λn)) 是傅立叶系数的函数

然而正向和反向傅里叶变换的计算成本为 O ( n 2 ) O(n^2) O(n2)。可以用某论文中的方法使用K 阶多项式参数化 g ( Λ ) g(\mathbf \Lambda) g(Λ),我们使用截断切比雪夫展开作为这样的多项式。Chebyshv多项式 T k ( x ) T_k(x) Tk(x) T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x ) T_k(x) = 2xT_{k−1}(x)−T_{k−2}(x) Tk(x)=2xTk1(x)Tk2(x)递归计算,其中 T 0 ( x ) = 1 T_0(x) = 1 T0(x)=1 T 1 ( x ) = x T_1(x) = x T1(x)=x。因此, g ( Λ ) g(\mathbf \Lambda) g(Λ)可以参数化为:
g ⋆ x ≈ ∑ k = 0 K θ k T k ( Δ ^ ) x , \text g\star \text x \approx \sum_{k=0}^K \theta_k T_k(\hat {\mathbf \Delta})\text{x}, gxk=0KθkTk(Δ^)x,
其中 T k ( Δ ^ ) T_k(\hat {\mathbf \Delta}) Tk(Δ^) 是k阶切比雪夫多项式,里面的缩放拉普拉斯算子为 Δ ^ = 2 λ m a x Δ − I \hat{\mathbf \Delta}=\frac{2}{\lambda_{max}}\mathbf \Delta-\mathbf I Δ^=λmax2ΔI。排除了拉普拉斯特征向量的扩展计算,只包括矩阵幂、加法和乘法,提升运算速度。我们可以进一步让 K = 1 来限制卷积操作的顺序,因为超图中的拉普拉斯算子已经可以很好地表示节点之间的高阶相关性。另一篇论文检建议,由于神经网络的规模适应性,令 λ m a x ≈ 2 \lambda_{max} \approx 2 λmax2,卷积运算可以进一步简化为:
g ⋆ x ≈ θ 0 x − θ 1 D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 x , \text g\star \text x \approx \theta_0 \text x-\theta_1 \mathbf D_v^{-1/2}\mathbf H \mathbf W \mathbf D_e^{-1} \mathbf H^{\mathsf T} \mathbf D_v^{-1/2} \text x, gxθ0xθ1Dv1/2HWDe1HTDv1/2x,
其中 θ 0 θ_0 θ0 θ 1 θ_1 θ1 是所有节点的过滤器参数。我们进一步使用单个参数 θ 来避免过拟合问题,定义为:
{ θ 1 = − 1 2 θ θ 0 = 1 2 θ D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 , \left\{\begin{array}{l} \theta_1 = -\frac{1}{2}\theta \\ \theta_0 = \frac{1}{2}\theta \mathbf D_v^{-1/2}\mathbf H \mathbf W \mathbf D_e^{-1} \mathbf H^{\mathsf T} \mathbf D_v^{-1/2}, \\\end{array}\right. {θ1=21θθ0=21θDv1/2HWDe1HTDv1/2,
卷积运算可以简化为下式:
g ⋆ x ≈ 1 2 θ D v − 1 / 2 H ( W + I ) D e − 1 H T D v − 1 / 2 x ≈ θ D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 x \text g\star \text x \approx \frac{1}{2}\theta \mathbf D_v^{-1/2}\mathbf H \mathbf {(W+I)} \mathbf D_e^{-1} \mathbf H^{\mathsf T} \mathbf D_v^{-1/2} \text x\\\approx \theta \mathbf D_v^{-1/2}\mathbf H \mathbf W \mathbf D_e^{-1} \mathbf H^{\mathsf T} \mathbf D_v^{-1/2} \text x gx21θDv1/2H(W+I)De1HTDv1/2xθDv1/2HWDe1HTDv1/2x
其中 ( W + I ) \mathbf{(W + I)} (W+I) 可以看作是超边的权重。 W \mathbf W W 被初始化为单位矩阵,这意味着所有超边的相等权重。

当我们有一个具有n个节点和C1维特征的超图信号 X ∈ R n × C 1 \mathbf X \in \mathbb R^{n \times C_1} XRn×C1 时,我们的超边卷积可以表示为:
Y = D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 X Θ , \mathbf{Y=D_v^{-1/2}HWD_e^{-1}H^{\mathsf T}D_v^{-1/2}X\Theta}, Y=Dv1/2HWDe1HTDv1/2,
其中 W = diag ( w 1 , . . . , w n ) \mathbf W =\text{diag}(\text{w}_1,...,\text{w}_n) W=diag(w1,...,wn) Θ ∈ R C 1 × C 2 \Theta \in \mathbb R^{C_1 \times C_2} ΘRC1×C2 是训练过程中要学习的参数。过滤器 Θ \mathbf \Theta Θ 应用于超图中的节点以提取特征。卷积后,我们可以得到 Y ∈ R n × C 2 \mathbf Y \in \mathbb R^{n \times C_2} YRn×C2 ,可用于分类。

超图神经网络分析

网络结构

多模态数据集分为训练数据和测试数据,每个数据包含多个具有特征的节点。然后从多模态数据集的复杂相关性构建多个超边结构组。我们组合超边组以生成超图邻接矩阵 H \mathbf H H。将超图邻接矩阵 H \mathbf H H和节点特征输入到HGNN中,得到节点输出标签。

我们可以在以下公式中构建一个超边卷积层 f ( X , W , Θ ) f \mathbf{(X, W, \Theta)} f(X,W,Θ)
X ( l + 1 ) = σ ( D v − 1 / 2 H W D e − 1 H T D v − 1 / 2 X ( l ) Θ ( l ) ) , \mathbf X^{(l+1)}=\sigma (\mathbf D_v^{-1/2}\mathbf H \mathbf W \mathbf D_e^{-1} \mathbf H^{\mathsf T} \mathbf D_v^{-1/2} \mathbf X^{(l)} \mathbf \Theta^{(l)}), X(l+1)=σ(Dv1/2HWDe1HTDv1/2X(l)Θ(l)),
其中 X ( l ) ∈ R N × C \mathbf X^{(l)} \in \mathbb R^{N \times C} X(l)RN×C l l l 层的超图信号, X ( 0 ) = X \mathbf X^{(0)} = \mathbf X X(0)=X σ \sigma σ 表示非线性激活函数。

卷积层结构

HGNN模型基于超图上的谱卷积。HGNN 层可以执行 节点-边-节点 的变换,这可以有效地提取超图上的高阶相关性。

卷积层结构

  1. 初始节点特征 X ( 1 ) \mathbf X^{(1)} X(1) 由可学习的滤波器矩阵 Θ ( 1 ) \mathbf \Theta^{(1)} Θ(1) 处理以提取 C 2 C_2 C2- 维特征
  2. 据超边收集节点特征以形成超边特征 R E × C 2 \mathbb R^{E \times C_2} RE×C2 ,这是通过乘以矩阵 H T ∈ R E × N \mathbf {H^{\mathsf T}} \in \mathbb R^{\mathbf {E \times N}} HTRE×N 来实现的
  3. 通过聚合其相关的超边特征来获得输出节点特征,该特征是通过乘以矩阵 H \mathbf H H 来实现的

—— D v \mathbf D_v Dv D e \mathbf D_e De在公式11中起到了归一化的作用

与现有方法的关系

超边只连接两个顶点时,超图被简化为一个简单的图,拉普拉斯算子 Δ \mathbf \Delta Δ 也与简单图的拉普拉斯算子一致(1/2倍相乘)

  • HGNN可以自然地对数据之间的高阶关系进行建模,有效地利用和编码形成特征提取
  • 与传统的超图方法相比,我们的模型在计算上非常高效,没有拉普拉斯算子 Δ \mathbf \Delta Δ 的逆运算
  • 在超边生成的灵活性下对多模态特征具有很大的可扩展性

实施

  1. 超图构造:图片分类任务中,提取每个对象的特征,根据欧氏距离构建超图。每个顶点代表一个视觉对象,每个超边通过连接一个顶点及其 K 个最近邻居来形成,这带来了 N 个链接 K + 1 个顶点的超边。引文图也类似地构造。
  2. 节点分类模型:数据集分为训练数据和测试数据,构建超图。按上图搭建网络,构建了一个两层HGNN模型,使用softmax 函数生成预测标签。使用交叉熵损失函数,将各种超边融合在一起,对数据的复杂关系进行建模。

实验

两个任务:引文网络分类和视觉对象识别,与图卷积网络和其他最先进的方法进行比较。

引文网络分类

Cora 和 Pubmed两个数据集

  • 每个数据的特征是文档的词袋表示
  • 每次选择图中的每个顶点作为质心,其连通顶点用于生成一条超边,包括质心本身
  • 获得与原始图规模相同的关联矩阵
  • Cora2708 个5%标记,Pubmed19717 个0.3%标记

参数设置:两层 HGNN

  • 隐藏层的特征维度设置为 16
  • dropout 丢弃率 p = 0.5
  • ReLU 作为非线性激活函数
  • Adam 优化器最小化交叉熵损失函数
  • 学习率为 0.001

结果讨论:Core和Pumbed上100次运行的平均分类精度

  • 与最先进的方法相比,HGNN模型可以达到最佳或相当的性能

    ——与 GCN 相比,HGNN 方法在 Cora 数据集上略有改进,在 Pubmed 数据集上提高了 1.1%

  • HGNN 获得的增益并不是很显著——因为构建的超图和传统图差不多

视觉对象分类

数据集

  • 普林斯顿ModelNet40
  • 国立台湾大学(NTU) 3D模型数据集

超图构建

  • 特征使用多视图卷积神经网络 (MVCNN) 和组视图卷积神经网络 (GVCNN)提取

  • 根据节点的距离构造一个概率图,生成亲和矩阵A来表示不同顶点之间的关系

    A i j = exp ⁡ ( − 2 D i j 2 Δ ) A_{ij}=\exp(-\frac{2D_{ij}^2}{\Delta}) Aij=exp(Δ2Dij2)

    其中Dij表示节点i和节点j之间的欧氏距离。Δ 是节点之间的平均成对距离

  • 两种超图构建方法:

    1. 基于单模态特征:每次选择一个数据集中的一个对象作为质心,选取特征空间中的10个最近邻生成一个超边,包括质心本身
    2. 基于多模态特征:使用多个特征来生成建模复杂多模态相关性的超图 G,只需要将超图关联矩阵拼接即可

结果讨论

  • HGNN方法在ModelNet40数据集中优于最先进的目标识别方法:分别获得 4.8% 和 3.2% 的增益
  • 与 GCN 相比,所提出的方法在所有实验中都取得了更好的性能:一个特征取得轻微改进,多个特征改进明显

优势分析

  1. 超图结构能够传达数据之间的复杂关系和高阶相关性,与图结构或没有图结构的方法相比,可以更好地表示底层的数据关系。
  2. 多模态数据/特征可用时,HGNN 的优势在于通过其灵活的超边将这种多模态信息组合在同一结构中。
  3. 与传统的超图学习方法可能存在计算复杂度高、存储成本高的问题相比,所提出的HGNN框架通过超边卷积运算效率更高

结论

超图神经网络 (HGNN) 的框架

  • 卷积运算推广到超图学习过程:谱域的卷积用超图拉普拉斯算子进行,进一步用截断的切比雪夫多项式逼近
  • 是一个更通用的框架:与传统图相比,能够通过超图结构处理复杂和高阶相关性以进行表示学习
  • 对引文网络分类和视觉对象识别任务进行了实验:HGNN 模型有更好的性能

——HGNN能够将复杂的数据相关性纳入表示学习,从而在视觉识别、检索和数据分类等许多任务中带来潜在的广泛应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/965687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉新财经理工 ​​​

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉新财经理工 ​​​

什么是盒子模型

什么是盒子模型 盒子模型,也可以称为框模型。 所有 HTML 元素可以看作盒子。在 CSS 中,“box model” 这一术语是用来设计和布局时使用。 CSS 盒模型本质上是一个盒子,封装周围的 HTML 元素,它包括:边距&#xff0c…

CSS学习笔记05

CSS笔记05 定位 position CSS 属性position - 用于指定一个元素在文档中的定位方式。top,right,bottom 和 left 属性则决定了该元素的最终位置。position 有以下常用的属性值: position: static; - 默认值。指定元素使用正常的布局行为&am…

神经网络--感知机

感知机 单层感知机原理 单层感知机:解决二分类问题,激活函数一般使用sign函数,基于误分类点到超平面的距离总和来构造损失函数,由损失函数推导出模型中损失函数对参数 w w w和 b b b的梯度,利用梯度下降法从而进行参数更新。让1代表A类,0代…

es5的实例__proto__(原型链) prototype(原型对象) {constructor:构造函数}

现在看这张图开始变得云里雾里,所以简单回顾一下 prototype 的基本内容,能够基本读懂这张图的脉络。 先介绍一个基本概念: function Person() {}Person.prototype.name KK;let person1 new Person();在上面的例子中, Person …

Nor Flash

核心信息: 工作频率数据吞吐量 bps bit/s(传输数据速率) Hz(时钟频率) T/s 56MB/s(max)448Mb/s(数据吞吐量、4路)448MHz 112MHz(max读、时钟频率&#…

Spring @Configuration 注解解析原理

前言 ​ Configuration 注解是 Spring 3.0 版本引入的新特性(目前版本 6.0.11),它用于将一个类标记为配置类,通过配置类可以定义和组装 Spring Bean。 一般来说注解都会有相应的解析器,Configuration 注解靠 C…

Pycharm中出现ImportError:DLL load failed:找不到指定模块的解决方法

不论搭建什么工程,运行什么文件,只要在Pycharm中出现ImportError: DLL load failed: 找不到指定的模块这样的问题,以下方法都适用!!! 一、问题描述 我在使用pycharm连接webots,用python控制机…

Redis功能实战篇之附近商户

在互联网的app当中,特别是像美团,饿了么等app。经常会看到附件美食或者商家, 当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我…

JavaScript -【第一周】

文章来源于网上收集和自己原创,若侵害到您的权利,请您及时联系并删除~~~ JavaScript 介绍 变量、常量、数据类型、运算符等基础概念 能够实现数据类型的转换,结合四则运算体会如何编程。 体会现实世界中的事物与计算机的关系理解什么是数据并…

mybatis源码学习-1-调试环境

写在前面,这里会有很多借鉴的内容,有以下三个原因 本博客只是作为本人学习记录并用以分享,并不是专业的技术型博客笔者是位刚刚开始尝试阅读源码的人,对源码的阅读流程乃至整体架构并不熟悉,观看他人博客可以帮助我快速入门如果只是笔者自己观看,难免会有很多弄不懂乃至理解错误…

【科研论文配图绘制】task7密度图绘制

【科研论文配图绘制】task7密度图绘制 task7 了解密度图的定义,清楚密度图是常用使用常见,掌握密度图绘制。 1.什么是密度图 密度图(Density Plot)是一种用于可视化数据分布的图表类型。它通过在数据中创建平滑的概率密度曲线…

java反编译工具jd-gui使用

文章目录 一、JD-GUI介绍二、下载三、安装四、使用教程五、免责声明摘抄 一、JD-GUI介绍 JD-GUI是一个独立的图形实用程序,显示“.class”文件的Java源代码。 使用JD-GUI浏览重构的源代码,以便即时访问方法和字段。 二、下载 MAC安装包:ht…

Gorm简单了解

GORM 指南 | GORM - The fantastic ORM library for Golang, aims to be developer friendly. 04_GORM查询操作_哔哩哔哩_bilibili 前置: db调用操作语句中间加debug()可以显示对应的sql语句 1.Gorm模型定义(理解重点&#xff…

在R中安装TensorFlow、TensorFlow_Probability、numpy(R与Python系列第二篇)

目录 前言: 1-安装tensorflow库 Step1: 下载R包tensorflow Step2:安装TensorFlow库 Step3:导入R中 2-安装tensorflow_probability库 Step1:下载R包:tfprobability Step2:安装TensorFlow Probability …

链表OJ练习(2)

一、分割链表 题目介绍: 思路:创建两个链表,ghead尾插大于x的节点,lhead尾插小于x的节点。先遍历链表。最后将ghead尾插到lhead后面,将大小链表链接。 我们需要在创建两个链表指针,指向两个链表的头节点&…

【Mysql系列】(一)MySQL语句执行流程

首发博客地址 首发博客地址 系列文章地址 参考文章 MySQL 逻辑架构 连接器 连接命令一般是这么写的 mysql -h$ip -P$port -u$user -p 那么 什么是连接器? MySQL 连接器(MySQL Connector)是用于连接和与 MySQL 数据库进行交互的驱动程序。它提…

高级IO

五种IO模型 1、阻塞等待:在内核将数据准备好之前,系统调用会一直等待。所有的套接字,默认都是阻塞方式。 2、非阻塞等待:如果内核没有将数据准备好,系统调用仍然会返回,并且会返回EWUOLDBLOCK或者EAGAIN错…

笔试题目回忆

&#xff08;1&#xff09;给出n,k&#xff0c;n表示数组个数&#xff0c;k表示要剔除的个数&#xff0c;接下来n个数为数组元素&#xff0c;求剔除k个数之后&#xff0c;其他所有数互为倍数&#xff0c;每个数最多剔除一次。 未检测代码&#xff0c;超时。 #include <ios…

第 3 章 栈和队列(单链队列)

1. 背景说明 队列(queue)是一种先进先出(first in first out,缩为 FIFO)的线性表。它只允许在表的一端进行插入&#xff0c;而在另一端删除元素。 2. 示例代码 1&#xff09;status.h /* DataStructure 预定义常量和类型头文件 */#ifndef STATUS_H #define STATUS_H/* 函数结果…