Redis功能实战篇之附近商户

news2025/1/24 11:42:11

在互联网的app当中,特别是像美团,饿了么等app。经常会看到附件美食或者商家,
当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我们的GEO,向后台传入当前app收集的地址(我们此处是写死的) ,以当前坐标作为圆心,同时绑定相同的店家类型type,以及分页信息,把这几个条件传入后台,后台查询出对应的数据再返回。

1.什么是GEC

GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。

但基于GEO搜索,其实有很多种方案,以下是我从度娘哪里得来的方案总结

sphinx geo索引1.支持按照距离排序,2.并支持分页。3.无法满足高实时性需求。(可能是不了解实时增量索引配置有误)资源占用小,速度快
mongodb geo索引1.支持按照距离排序,2.并支持分页,3.支持多条件筛选,4.可满足实时性需求 5.资源占用大,数据量达到百万级请流量在10w左右查询速度明显下降。
mysql+geohash / mysql sql查询1.不支持按照距离排序(代价太大)。2.支持分页。3.支持多条件筛选。4.可满足实时性需求。5.资源占用中等,查询速度不及mongodb。且geohash按照区块将球面转化平面并切割。暂时没有找到跨区块查询方法
redis+geohash1.支持距离排序(但版本需要6.2以后的)。2.支持分页查询。3.不支持多条件筛选。4.可满足实时性需求。资源占用最小。查询速度很快

当然还有Elasticsearch+geohash,从技术学习成本和实现成本来看,最优的三种方式就是 mongodb ,redis 和 Elasticsearch。
关于ES实现思路
这里就对redis的GEO进行一个介绍,常见的命令有:

  • GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
  • GEODIST:计算指定的两个点之间的距离并返回
  • GEOHASH:将指定member的坐标转为hash字符串形式并返回
  • GEOPOS:返回指定member的坐标
  • GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
  • GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
  • GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能

在这里插入图片描述
我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。

但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可

实现思路

先看下表结构:
在这里插入图片描述
表中一定要有 X轴 和 Y轴 的坐标数据

1:先将带地址位置的店铺类型进行分类,分配导入Redis

@Test
void loadShopData() {
    // 1.查询店铺信息
    List<Shop> list = shopService.list();
    // 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合
    Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
    // 3.分批完成写入Redis
    for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
        // 3.1.获取类型id
        Long typeId = entry.getKey();
        String key = SHOP_GEO_KEY + typeId;
        // 3.2.获取同类型的店铺的集合
        List<Shop> value = entry.getValue();
        List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
        // 3.3.写入redis GEOADD key 经度 纬度 member
        for (Shop shop : value) {
            // stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
            locations.add(new RedisGeoCommands.GeoLocation<>(
                    shop.getId().toString(),
                    new Point(shop.getX(), shop.getY())
            ));
        }
        stringRedisTemplate.opsForGeo().add(key, locations);
    }
}

注意:SpringBoot版本,大部分使用的是SpringDataRedis的2.3.9版本并不支持Redis 6.2提供的GEOSEARCH命令,因此需要排除此版本,引入新版本

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
    <!-- 排除就版本的redis坐标 -->
    <exclusions>
        <exclusion>
            <artifactId>spring-data-redis</artifactId>
            <groupId>org.springframework.data</groupId>
        </exclusion>
        <exclusion>
            <artifactId>lettuce-core</artifactId>
            <groupId>io.lettuce</groupId>
        </exclusion>
    </exclusions>
</dependency>
<!-- 引入新版本maven坐标 -->
<dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-redis</artifactId>
    <version>2.6.2</version>
</dependency>
<dependency>
    <groupId>io.lettuce</groupId>
    <artifactId>lettuce-core</artifactId>
    <version>6.1.6.RELEASE</version>
</dependency>

2. 接口层入参一定要有《当前坐标》 作为入参

@Controller

@GetMapping("/of/type")
public Result queryShopByType(
        @RequestParam("typeId") Integer typeId,
        @RequestParam(value = "current", defaultValue = "1") Integer current,
        @RequestParam(value = "x", required = false) Double x,
        @RequestParam(value = "y", required = false) Double y
) {
   return shopService.queryShopByType(typeId, current, x, y);
}

3.使用Redis的GEOSEARCH 命令进行查询

@Override
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        // 1.判断是否需要根据坐标查询
        if (x == null || y == null) {
            // 不需要坐标查询,按数据库查询
            Page<Shop> page = query()
                    .eq("type_id", typeId)
                    .page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            // 返回数据
            return Result.ok(page.getRecords());
        }

        // 2.计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;

        // 3.查询redis、按照距离排序、分页。结果:shopId、distance
        String key = SHOP_GEO_KEY + typeId;
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
                .search(
                        key,
                        GeoReference.fromCoordinate(x, y),
                        new Distance(5000),
                        RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
                );
        // 4.解析出id
        if (results == null) {
            return Result.ok(Collections.emptyList());
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        if (list.size() <= from) {
            // 没有下一页了,结束
            return Result.ok(Collections.emptyList());
        }
        // 4.1.截取 from ~ end的部分
        List<Long> ids = new ArrayList<>(list.size());
        Map<String, Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result -> {
            // 4.2.获取店铺id
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            // 4.3.获取距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr, distance);
        });
        // 5.根据id查询Shop
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        // 6.返回
        return Result.ok(shops);
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/965673.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript -【第一周】

文章来源于网上收集和自己原创&#xff0c;若侵害到您的权利&#xff0c;请您及时联系并删除~~~ JavaScript 介绍 变量、常量、数据类型、运算符等基础概念 能够实现数据类型的转换&#xff0c;结合四则运算体会如何编程。 体会现实世界中的事物与计算机的关系理解什么是数据并…

mybatis源码学习-1-调试环境

写在前面,这里会有很多借鉴的内容,有以下三个原因 本博客只是作为本人学习记录并用以分享,并不是专业的技术型博客笔者是位刚刚开始尝试阅读源码的人,对源码的阅读流程乃至整体架构并不熟悉,观看他人博客可以帮助我快速入门如果只是笔者自己观看,难免会有很多弄不懂乃至理解错误…

【科研论文配图绘制】task7密度图绘制

【科研论文配图绘制】task7密度图绘制 task7 了解密度图的定义&#xff0c;清楚密度图是常用使用常见&#xff0c;掌握密度图绘制。 1.什么是密度图 密度图&#xff08;Density Plot&#xff09;是一种用于可视化数据分布的图表类型。它通过在数据中创建平滑的概率密度曲线…

java反编译工具jd-gui使用

文章目录 一、JD-GUI介绍二、下载三、安装四、使用教程五、免责声明摘抄 一、JD-GUI介绍 JD-GUI是一个独立的图形实用程序&#xff0c;显示“.class”文件的Java源代码。 使用JD-GUI浏览重构的源代码&#xff0c;以便即时访问方法和字段。 二、下载 MAC安装包&#xff1a;ht…

Gorm简单了解

GORM 指南 | GORM - The fantastic ORM library for Golang, aims to be developer friendly. 04_GORM查询操作_哔哩哔哩_bilibili 前置&#xff1a; db调用操作语句中间加debug&#xff08;&#xff09;可以显示对应的sql语句 1.Gorm模型定义&#xff08;理解重点&#xff…

在R中安装TensorFlow、TensorFlow_Probability、numpy(R与Python系列第二篇)

目录 前言&#xff1a; 1-安装tensorflow库 Step1: 下载R包tensorflow Step2&#xff1a;安装TensorFlow库 Step3&#xff1a;导入R中 2-安装tensorflow_probability库 Step1&#xff1a;下载R包&#xff1a;tfprobability Step2&#xff1a;安装TensorFlow Probability …

链表OJ练习(2)

一、分割链表 题目介绍&#xff1a; 思路&#xff1a;创建两个链表&#xff0c;ghead尾插大于x的节点&#xff0c;lhead尾插小于x的节点。先遍历链表。最后将ghead尾插到lhead后面&#xff0c;将大小链表链接。 我们需要在创建两个链表指针&#xff0c;指向两个链表的头节点&…

【Mysql系列】(一)MySQL语句执行流程

首发博客地址 首发博客地址 系列文章地址 参考文章 MySQL 逻辑架构 连接器 连接命令一般是这么写的 mysql -h$ip -P$port -u$user -p 那么 什么是连接器&#xff1f; MySQL 连接器&#xff08;MySQL Connector&#xff09;是用于连接和与 MySQL 数据库进行交互的驱动程序。它提…

高级IO

五种IO模型 1、阻塞等待&#xff1a;在内核将数据准备好之前&#xff0c;系统调用会一直等待。所有的套接字&#xff0c;默认都是阻塞方式。 2、非阻塞等待&#xff1a;如果内核没有将数据准备好&#xff0c;系统调用仍然会返回&#xff0c;并且会返回EWUOLDBLOCK或者EAGAIN错…

笔试题目回忆

&#xff08;1&#xff09;给出n,k&#xff0c;n表示数组个数&#xff0c;k表示要剔除的个数&#xff0c;接下来n个数为数组元素&#xff0c;求剔除k个数之后&#xff0c;其他所有数互为倍数&#xff0c;每个数最多剔除一次。 未检测代码&#xff0c;超时。 #include <ios…

第 3 章 栈和队列(单链队列)

1. 背景说明 队列(queue)是一种先进先出(first in first out,缩为 FIFO)的线性表。它只允许在表的一端进行插入&#xff0c;而在另一端删除元素。 2. 示例代码 1&#xff09;status.h /* DataStructure 预定义常量和类型头文件 */#ifndef STATUS_H #define STATUS_H/* 函数结果…

线上问诊:数仓开发(二)

系列文章目录 线上问诊&#xff1a;业务数据采集 线上问诊&#xff1a;数仓数据同步 线上问诊&#xff1a;数仓开发(一) 线上问诊&#xff1a;数仓开发(二) 文章目录 系列文章目录前言一、DWS1.最近1日汇总表1.交易域医院患者性别年龄段粒度问诊最近1日汇总表2.交易域医院患者…

身份识别与鉴权技术调研方案

对称加密算法 对称加密方式又称为私钥加密方式&#xff0c;该方式的加密和解密过程使用同一个密钥&#xff0c;因此该密钥又称为共享密钥。如图2.2所示&#xff0c;在对称加密方式中&#xff0c;发送方使用对称加密算法和共享密钥处理原始数据&#xff0c;得到一个加密后的密文…

vulnhub渗透测试靶场练习2

靶场介绍 靶场名&#xff1a;easy_cloudantivirus 靶场地址&#xff1a;https://www.vulnhub.com/entry/boredhackerblog-cloud-av,453 环境搭建 依旧使用VM VirtualBox搭建靶场&#xff0c;攻击机使用的是VMware中的kali&#xff0c;需要将VMware虚拟机kali和virtualbox靶机…

Web服务器部署上线踩坑流程回顾

5月份时曾部署上线了C的Web服务器&#xff0c;温故而知新&#xff0c;本篇文章梳理总结一下部署流程知识&#xff1b; 最初的解决方案&#xff1a;https://blog.csdn.net/BinBinCome/article/details/129750951?spm1001.2014.3001.5501后来的解决方案&#xff1a;https://blog…

Mysql数据库(3)—架构和日志

Mysql的架构设计 Mysql分为Server层和存储引擎层&#xff1a; Server层 主要包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等&#xff09;&#xff…

Android逆向学习(一)vscode进行android逆向修改并重新打包

Android逆向学习&#xff08;一&#xff09;vscode进行android逆向修改并重新打包 写在前面 其实我不知道这个文章能不能写下去&#xff0c;其实我已经开了很多坑但是都没填上&#xff0c;现在专利也发出去了&#xff0c;就开始填坑了&#xff0c;本坑的主要内容是关于androi…

回归拟合 | 灰狼算法优化核极限学习机(GWO-KELM)MATLAB实现

这周有粉丝私信想让我出一期GWO-KELM的文章&#xff0c;因此乘着今天休息就更新了(希望不算晚) 作者在前面的文章中介绍了ELM和KELM的原理及其实现&#xff0c;ELM具有训练速度快、复杂度低、克服了传统梯度算法的局部极小、过拟合和学习率的选择不合适等优点&#xff0c;而KEL…

OpenCV(十):图像缩放、翻转、拼接的介绍与使用

目录 &#xff08;1&#xff09;图像缩放&#xff1a;resize() &#xff08;2&#xff09;图像翻转&#xff1a; flip() &#xff08;3&#xff09;图像拼接&#xff1a;hconcat() 和vconcat() &#xff08;1&#xff09;图像缩放&#xff1a;resize() 使用 cv2.resize() 函…

React笔记(三)类组件(1)

一、组件的概念 使用组件方式进行编程&#xff0c;可以提高开发效率&#xff0c;提高组件的复用性、提高代码的可维护性和可扩展性 React定义组件的方式有两种 类组件&#xff1a;React16.8版本之前几乎React使用都是类组件 函数组件:React16.8之后&#xff0c;函数式组件使…