【分类】分类性能评价

news2025/1/24 17:35:59

评价指标

1、准确率、召回率、精确率、F-度量、ROC

​ 属于各类的样本的并不是均一分布,甚至其出现概率相差很多个数量级,这种分类问题称为不平衡类问题。在不平衡类问题中,准确率并没有多大意义,我们需要一些别的指标。

​ 通常在不平衡类问题中,我们使用F-度量来作为评价模型的指标。以二元不平衡分类问题为例,预测只可能出现4种状况:

​ a) 将正类样本预测为正类(True Positive, TP) b) 将负类样本预测为正类(False Positive, FP)

​ c) 将正类样本预测为负类(False Negative, FN) d) 将负类样本预测为负类(True Negative, TN)
在这里插入图片描述

  • 对于测试集中 N N N个样本,有 M M M个被正确分类,则准确率(正确率)为:

准确率 ( A c c u r a c y ) = M N 准确率(Accuracy) =\frac{M}{N} 准确率(Accuracy)=NM

  • 定义召回率(recall):不能接受漏报,预测到所有想被预测到的样本

召回率 ( r e c a l l ) = 被预测为正类的 原本的正类 = ∣ T P ∣ ∣ T P ∣ + ∣ F N ∣ 召回率(recall)=\frac{被预测为正类的}{原本的正类}=\frac{|TP|}{|TP|+|FN|} 召回率(recall)=原本的正类被预测为正类的=TP+FNTP

  • 定义精确率(precision):不能接受误检,预测结果尽可能不出错
    精确率 ( p r e c i s i o n ) = 被预测为正类的 预测的正类 = ∣ T P ∣ ∣ T P ∣ + ∣ F P ∣ 精确率(precision)=\frac{被预测为正类的}{预测的正类}=\frac{|TP|}{|TP|+|FP|} 精确率(precision)=预测的正类被预测为正类的=TP+FPTP

  • F F F-度量则是在召回率与精确率之间去调和平均数;
    F α = ( 1 + α 2 ) R P R + α P F 1 = 2 R P R + P F_{ \alpha}=\frac{(1+\alpha ^2)RP}{R+\alpha P}\\ F_{1}=\frac{2RP}{R+P} Fα=R+αP(1+α2)RPF1=R+P2RP

精确率:分母是预测到的正类,精确率的提出是让模型的现有预测结果尽可能不出错(宁愿漏检,也不能让现有的预测有错)

以地震模型为例说就是宁愿地震了没报,也不能误报地震,比如说为了不错报,只预测了第50天可能发生地震,此时的

1.精确率:1/1=100%

2.召回率:1/2=50%

虽然有一次地震没预测到,但是我们做出的预测都是对的。

召回率:分母是原本的正类,召回率的提出是让模型预测到所有想被预测到的样本(就算多预测一些错的,也能接受)

以地震模型为例说这100次地震,比如说为了不漏报,预测了第30天、50天、51天、70天、85天地震,此时的

1.精确率:2/5=40%

2.召回率:2/2=100%

虽然预测错了3次,但是我们把会造成灾难的2次地震全预测到了。

精确率和召回率有什么用?为什么需要它?通俗讲解(人话)

上面我们已经讲的很清楚了,这里以两种需求为例

  1. 预测地震 - 不能接受漏报
  2. 人脸识别支付(银行人脸支付) - 不能接受误检

人脸识别支付:主要提升精确率,更倾向于不能出现错误的预测。

应用场景:你刷脸支付时就算几次没检测到你的脸,最多会让你愤怒,对银行损失不大,但是如果把你的脸检测成别人的脸,就会出现金融风险,让别人替你买单,对银行损失很大。所以宁愿让你付不了钱,也不会让别人帮你付钱。

预测地震:主要提升召回率,更倾向于宁愿多预测一些错的也不能漏检。

应用场景:地震预测时宁愿多预测一些错的,也不想漏掉一次地震,预测错误最多会让大家多跑几趟,造成少量损失。只要预测对一次,就会挽回百亿级别的损失,之前所有的损失都值了。

ROC曲线(Receiver Operating Characteristic,受试者操作特征)
通常情况下,我们希望ROC曲线越靠近左上角,这表示模型在各种阈值下都表现良好,同时具有高的真正率和低的假正率,而AUC值(曲线下面积)也可以用来衡量模型的整体性能,越接近1表示模型性能越好。

画ROC曲线步骤:

  • 根据分类模型得出每个样本属于正类的概率,根据概率将样本由高到低排列
  • 将样本为正类的概率由高到低,依次作为阈值 t t t,大于等于 t t t则为正类,小于t视为反类
  • 使用真正率 T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP作为竖轴,假正率 F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP作为横轴,对于每个选定的阈值均能产生一个对应的点。

例子:

样本编号分类预测为正类的概率TPRFPR
1正类0.98 1 1 + 14 = 1 15 \frac{1}{1+14}=\frac{1}{15} 1+141=151 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
2正类0.96 2 2 + 13 = 2 15 \frac{2}{2+13}=\frac{2}{15} 2+132=152 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
3正类0.92 3 3 + 12 = 3 15 \frac{3}{3+12}=\frac{3}{15} 3+123=153 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
4正类0.88 4 4 + 11 = 4 15 \frac{4}{4+11}=\frac{4}{15} 4+114=154 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
5正类0.85 5 5 + 10 = 5 15 \frac{5}{5+10}=\frac{5}{15} 5+105=155 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
6正类0.83 6 6 + 9 = 6 15 \frac{6}{6+9}=\frac{6}{15} 6+96=156 0 0 + 5 = 0 5 \frac{0}{0+5}=\frac{0}{5} 0+50=50
7反类0.82 6 6 + 9 = 6 15 \frac{6}{6+9}=\frac{6}{15} 6+96=156 1 1 + 4 = 1 5 \frac{1}{1+4}=\frac{1}{5} 1+41=51
8正类0.8 7 7 + 8 = 7 15 \frac{7}{7+8}=\frac{7}{15} 7+87=157 1 1 + 4 = 1 5 \frac{1}{1+4}=\frac{1}{5} 1+41=51
9正类0.78 8 8 + 7 = 8 15 \frac{8}{8+7}=\frac{8}{15} 8+78=158 1 1 + 4 = 1 5 \frac{1}{1+4}=\frac{1}{5} 1+41=51
10反类0.71 8 8 + 7 = 8 15 \frac{8}{8+7}=\frac{8}{15} 8+78=158 2 2 + 3 = 2 5 \frac{2}{2+3}=\frac{2}{5} 2+32=52
11正类0.68 9 9 + 6 = 9 15 \frac{9}{9+6}=\frac{9}{15} 9+69=159 2 2 + 3 = 2 5 \frac{2}{2+3}=\frac{2}{5} 2+32=52
12正类0.64 10 10 + 5 = 10 15 \frac{10}{10+5}=\frac{10}{15} 10+510=1510 2 2 + 3 = 2 5 \frac{2}{2+3}=\frac{2}{5} 2+32=52
13正类0.59 11 11 + 4 = 11 15 \frac{11}{11+4}=\frac{11}{15} 11+411=1511 2 2 + 3 = 2 5 \frac{2}{2+3}=\frac{2}{5} 2+32=52
14正类0.55 12 12 + 3 = 12 15 \frac{12}{12+3}=\frac{12}{15} 12+312=1512 2 2 + 3 = 2 5 \frac{2}{2+3}=\frac{2}{5} 2+32=52
15反类0.52 12 12 + 3 = 12 15 \frac{12}{12+3}=\frac{12}{15} 12+312=1512 3 3 + 2 = 3 5 \frac{3}{3+2}=\frac{3}{5} 3+23=53
16正类0.51 13 13 + 2 = 13 15 \frac{13}{13+2}=\frac{13}{15} 13+213=1513 3 3 + 2 = 3 5 \frac{3}{3+2}=\frac{3}{5} 3+23=53
17正类0.5 14 14 + 1 = 14 15 \frac{14}{14+1}=\frac{14}{15} 14+114=1514 3 3 + 2 = 3 5 \frac{3}{3+2}=\frac{3}{5} 3+23=53
18反类0.48 14 14 + 1 = 14 15 \frac{14}{14+1}=\frac{14}{15} 14+114=1514 4 4 + 1 = 4 5 \frac{4}{4+1}=\frac{4}{5} 4+14=54
19正类0.42 15 15 + 0 = 15 15 \frac{15}{15+0}=\frac{15}{15} 15+015=1515 4 4 + 1 = 4 5 \frac{4}{4+1}=\frac{4}{5} 4+14=54
20反类0.2 15 15 + 0 = 15 15 \frac{15}{15+0}=\frac{15}{15} 15+015=15151

数字表示转折点对应样本编号

ROC曲线下方面积为 A U C AUC AUC, A U C AUC AUC值越大,表示分类模型的预测准确性越高, R O C ROC ROC曲线越光滑,一般表示过拟合现象较轻(为什么??


2.各项指标的python实现,以logistic回归为例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
plt.rcParams['font.sans-serif']=['STKaiTi'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# 创建一个示例分类数据集
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)

# 将数据集分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练一个分类模型,例如Logistic回归
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'准确率 (Accuracy): {accuracy:.2f}')

# 计算召回率
recall = recall_score(y_test, y_pred)
print(f'召回率 (Recall): {recall:.2f}')

# 计算精确率
precision = precision_score(y_test, y_pred)
print(f'精确率 (Precision): {precision:.2f}')

# 计算F1指标
F1 = 2*recall*precision/(recall+ precision)
print(f'F1={F1}')

#ROC曲线和AUC值
fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:, 1])
roc_auc = auc(fpr, tpr)

# 可视化ROC曲线
plt.figure(figsize=(10, 6),dpi = 300)
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC曲线 (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('假正率 (False Positive Rate)')
plt.ylabel('真正率 (True Positive Rate)')
plt.title('ROC曲线')
plt.legend(loc='lower right')
plt.show()

结果:
准确率 (Accuracy): 0.85
召回率 (Recall): 0.83
精确率 (Precision): 0.88
F1=0.8504983388704319
在这里插入图片描述

评价方法

  • 保留法:划分训练集于测试集,比例不清楚,没有k-折交叉验证好
  • k-折交叉验证:将样本随机划分为k个大小相等的子集,在每一轮交叉验证种,选择一个子集作为测试集,重复k轮,保证每个子集都作为测试集出现,对k轮检验结果取平均值作为评价表中
  • 蒙特卡洛交叉验证:多次保留法,某些样本可能只出现在测试集中

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/965608.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PYTHON知识点学习-函数(下)

🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由 Aileen_0v0🧸 原创 CSDN首发🐒 如…

Mac安装brew、mysql、redis

mac安装brew mac安装brewmac安装mysql并配置开机启动mac安装redis并配置开机启动 mac安装brew 第一步:执行. /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"第二步:输入开机密码 第三…

element+vue table表格全部数据和已选数据联动

1.组件TableChoose <template><div class"tableChooseBox"><div class"tableRow"><div class"tableCard"><div class"tableHeadTip">全部{{ labelTitle }}</div><slot name"body" …

《奥本海默》热映,Sam Altman 会是下个他吗?

撰文&#xff1a;Nathan Gardels 来源&#xff1a;Noema 治理可能摧毁社会的技术。 图片来源&#xff1a;由无界AI生成 电影导演克里斯托弗 - 诺兰&#xff08;Christopher Nolan&#xff09;说&#xff0c;他曾与正在经历“奥本海默时刻”的人工智能科学家交谈过&#xff0c;他…

JavaScript 实现树形结构和一维数组互相转换

背景 树形结构和一维数组是开发中很容易碰到的情况&#xff0c;也是面试中很容易碰到的手撕题目 实现 一、一维数组转树形结构 FROM const source [{ id: 1, name: "张三", pid: 0 },{ id: 2, name: "李四", pid: 1 },{ id: 3, name: "王五&qu…

【【STM32--28--IO引脚的复用功能】】

STM32–28–IO引脚的复用功能 STM32的IO复用功能 何为复用? 我们先了解一下何为通用 IO端口的输入或输出是由GPIO外设控制&#xff0c;我们称之为通用 复用&#xff1a; IO端口的输入或者是输出是由其他非GPIO外设控制就像经常说的USART 由 DR寄存器进行输出 STM32的IO复用功…

Python学习教程:集合操作的详细教程

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 Python中有两种可以遍历的容器类型&#xff1a; 序列类型&#xff1a;包含字符串、列表、元祖 序列类型是线性表&#xff0c;就像数组一样&#xff0c;是在内存中开辟一块连续空间&#xff0c;连续存储的&#xff0c; 那么查找…

前端vue3+ts架构

1、vue creat 项目名称 选择自定义 选择需要的依赖 选择vue3 一路enter&#xff0c;选择eslistprettier 继续enter&#xff0c;等待安装 按步骤操作&#xff0c;项目启动成功 2、vscode安装5款插件 2、代码保存自动格式化&#xff0c;保证每个开发人员代码一致&#xff0c;根目…

震惊!靠「职业骗薪」,在上海买了别墅

昨天在知乎热榜上看到一条新闻&#xff0c;震惊之余&#xff0c;也有点可叹可悲的感觉。 根据经济观察报的报道&#xff1a;职业骗薪者&#xff0c;3 年在沪买别墅&#xff0c;同时供职 16 家公司却从不上班&#xff0c;落网时她还在面试。 新闻上说&#xff1a;管悦被警察抓获…

Bert和LSTM:情绪分类中的表现

一、说明 这篇文章的目的是评估和比较 2 种深度学习算法&#xff08;BERT 和 LSTM&#xff09;在情感分析中进行二元分类的性能。评估将侧重于两个关键指标&#xff1a;准确性&#xff08;衡量整体分类性能&#xff09;和训练时间&#xff08;评估每种算法的效率&#xff09;。…

OpenCV(十六):高斯图像金字塔

目录 1.高斯图像金字塔原理 2.高斯图像金字塔实现 1.高斯图像金字塔原理 高斯图像金字塔是一种用于多尺度图像表示和处理的重要技术。它通过对图像进行多次高斯模糊和下采样操作来生成不同分辨率的图像层级&#xff0c;每个层级都是原始图像的模糊和降采样版本。 以下是高斯…

系统中出现大量不可中断进程和僵尸进程(理论)

一 进程状态 当 iowait 升高时&#xff0c;进程很可能因为得不到硬件的响应&#xff0c;而长时间处于不可中断状态。从 ps 或者 top 命令的输出中&#xff0c;你可以发现它们都处于 D 状态&#xff0c;也就是不可中断状态&#xff08;Uninterruptible Sleep&#xff09;。 R …

Python Opencv实践 - 轮廓检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/map.jpg") print(img.shape) plt.imshow(img[:,:,::-1])#Canny边缘检测 edges cv.Canny(img, 127, 255, 0) plt.imshow(edges, cmapplt.cm.gray)#查找轮廓 #c…

【C++代码】找出字符串中第一个匹配项的下标,重复的子字符串--代码随想录

题目&#xff1a;找出字符串中第一个匹配项的下标 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 题…

地理测绘基础知识(4) 照射计算上篇

我们接着上一篇来推导。 照射计算&#xff0c;是一种常用的三维几何计算。已知一个光源的光强图&#xff0c;计算光源投射到地表各处的功率密度。这种计算需求可以直观的理解为计算已知位置、指向、聚光特性的手电筒&#xff0c;计算地表某地点强度。当然&#xff0c;如果穷尽地…

mysql使用st_distance_sphere函数报错Incorrect arguments to st_distance_sphere

最近发现执行mysql st_distance_sphere报错了。 报错的信息是Incorrect arguments to st_distance_sphere。 最开始以为是跟mysql的版本有关系&#xff0c;所以看了下自己本地的mysql版本&#xff0c;执行一下sql select version(); 发现自己本地的mysql版本是 5.7.30 这…

FFmpeg报错:Connection to tcp://XXX?timeout=XXX failed: Connection timed out

一、现象 通过FFmpeg&#xff08;FFmpeg的版本是5.0.3&#xff09;拉摄像机的rtsp流获取音视频数据&#xff0c;执行命令&#xff1a; ./ffmpeg -timeout 3000000 -i "rtsp://172.16.17.156/stream/video5" 报错&#xff1a;Connection to tcp://XXX?timeoutXXX …

JavaScript 生成 16: 9 宽高比

这篇文章只是对 for 循环一个简单应用&#xff0c;没有什么知识含量。 可以跳过这篇文章。 只是我用来保存一下我的代码&#xff0c;保存在本地我嫌碍眼&#xff0c;总想把他删了。 正文部分 公式&#xff1a;其中 width 表示宽度&#xff0c;height 表示高度 16 9 w i d t…

CLIP改进工作串讲(bryanyzhu)内容记录

文章目录 分割Language-driven semantic segmentation - ICLR2022GroupViT: Semantic Segmentation Emerges from Text Supervision 目标检测ViLD : Open-vocabulary object detection via vision and language knowledge distillation 视觉定位GLIP:Grounded Language-Image P…

VsCode搭建Java开发环境 vscode搭建java开发环境 vscode springboot 搭建springboot

VsCode搭建Java开发环境 vscode搭建java开发环境 vscode springboot 搭建springboot VsCode java开发截图1、安装Java 环境相关插件2、安装 Spring 插件3、安装 Mybatis 插件第一个 vsc-mybatis第二个 mybatisX 4、安装Maven环境4.1、安装Maven环境4.2、VsCode配置Maven环境 5、…