【OpenCV入门】第五部分——图像运算

news2024/11/27 10:04:08

文章结构

  • 掩模
  • 图像的加法运算
  • 图像的位运算
    • 按位与运算
    • 按位或运算
    • 按位取反运算
    • 按位异或运算
    • 图像位运算的运用
  • 合并图像
    • 加权和
    • 覆盖

掩模

当计算机处理图像时,有些内容需要处理,有些内容不需要处理。能够覆盖原始图像,仅暴露原始图像“感兴趣区域”(ROI)的模板图像就叫做掩模

掩模(mask),也叫做掩码,在程序中用二值图像来表示:0值(纯黑)区域表示被遮盖的部分,255值(纯白)区域表示暴露的部分(某些场景下也会用0和1当作掩模的值)。示意图如下:
在这里插入图片描述在这里插入图片描述

在使用OpenCV处理图像时,通常使用NumPy库提供的方法来创建掩模图像。

实例1: 创建3通道掩模图像
利用NumPy库的zeros()方法创建一幅掩模图像

import cv2
import numpy as np

# 创建宽150、高150、3通道、像素类型为无符号8位数字的零值图像
mask = np.zeros((150, 150, 3), np.uint8)
mask[50:100, 20:80, :] = 255;  # 50~100行、20~80列的像素改为纯白像素
cv2.imshow("mask1", mask)  # 展示掩模
mask[:, :, :] = 255;  # 全部改为纯白像素
mask[50:100, 20:80, :] = 0;  # 50~100行、20~80列的像素改为纯黑像素
cv2.imshow("mask2", mask)  # 展示掩模
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:
在这里插入图片描述

图像的加法运算

图像中每一个像素都有用整数表示的像素值,两幅图像相加就是让相同位置像素值相加,最后将计算结果按照原位置组成一幅新图像。示意图如下:
在这里插入图片描述

dst = cv2.add(src1, src2, mask, dtype)
  • src1: 第一幅图像
  • src2: 第二幅图像
  • mask:(可选)掩模,建议使用默认值
  • dtype:(可选)图像深度,建议使用默认值
  • dst: 相加之后的结果图像。如果相加之后值的结果大于255,则取255

实例2: 分别使用“+”和add()方法计算图像和

import cv2

img = cv2.imread("beach.jpg")  # 读取原始图像
sum1 = img + img  # 使用运算符相加
sum2 = cv2.add(img, img)  # 使用方法相加
cv2.imshow("img", img)  # 展示原图
cv2.imshow("sum1", sum1)  # 展示运算符相加结果
cv2.imshow("sum2", sum2)  # 展示方法相加结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

从结果中可以看出,“+”运算符的计算结果如果超出了255,就会取相加和除以255的余数,也就是取模运算,像素值相加之后反而变得更小了,由浅色变成了深色;而add()方法的计算结果如果超过了255,就取值255,很多浅颜色像素彻底变成了纯白色。

当使用与“+”运算符相对的“-”运算符操作一幅图像时,又会呈现怎样的视觉效果呢?首先先来了解一下相片底片的颜色与图像的原色之间有哪些联系。

相片底片的颜色与图像的原色是正好相反的,即反色,又被称为补色,红色的补色是绿色,蓝色的补色是橙色,黄色的补色是紫色。

下面通过一个实例演示如何使用“-”运算符得到图像底片的效果。

实例3: 显示图像底片的效果
图像的反色与原色叠加后,可以变为纯白色。因此,为了得到一幅图像的底片效果,只需用255(纯白色)减去这幅图像中的每一个像素的BGR值即可。

import cv2

img = cv2.imread("3.png") # 读取当前项目文件夹下的图像
cameraFilm = 255 - img # 用纯白色减去图像的原色得到图像的反色,从而得到这幅图像的底片效果
cv2.imshow("img", img) # 显示图像
cv2.imshow("cameraFilm", cameraFilm) # 窗口显示图像底片的效果
cv2.waitKey() # 按下键盘上的任意按键后
cv2.destroyAllWindows() # 销毁显示图像的所有窗口

结果如下:

在这里插入图片描述

下面通过一个实例演示如何使用加运算修改图像颜色。

实例4: 模拟三色光叠加得白光

import cv2
import numpy as np

img1 = np.zeros((150, 150, 3), np.uint8)  # 创建150*150的0值图像
img1[:, :, 0] = 255  # 蓝色通道赋予最大值
img2 = np.zeros((150, 150, 3), np.uint8)
img2[:, :, 1] = 255  # 绿色通道赋予最大值
img3 = np.zeros((150, 150, 3), np.uint8)
img3[:, :, 2] = 255  # 红色通道赋予最大值
cv2.imshow("1", img1)  # 展示蓝色图像
cv2.imshow("2", img2)  # 展示绿色图像
cv2.imshow("3", img3)  # 展示红色图像
img = cv2.add(img1, img2)  # 蓝色 + 绿色 = 青色
cv2.imshow("1+2", img)  # 展示蓝色加绿色的结果
img = cv2.add(img, img3)  # 红色 + 青色 = 白色
cv2.imshow("1+2+3", img)  # 展示三色图像相加的结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

图像的加运算中也可以使用掩模。

实例5: 利用掩模遮盖相加结果
创建纯蓝和纯红这两幅图像,使用add()方法对两幅图像进行加运算,并在方法中添加一个掩模。

import cv2
import numpy as np

img1 = np.zeros((150, 150, 3), np.uint8)  # 创建150*150的0值图像
img1[:, :, 0] = 255  # 蓝色通道赋予最大值
img2 = np.zeros((150, 150, 3), np.uint8)
img2[:, :, 2] = 255  # 红色通道赋予最大值

img = cv2.add(img1, img2)  # 蓝色 + 红色 = 洋红色
cv2.imshow("no mask", img)  # 展示相加的结果

m = np.zeros((150, 150, 1), np.uint8)  # 创建掩模
m[50:100, 50:100, :] = 255  # 掩模中央位置为纯白色
cv2.imshow("mask", m)  # 展示掩模

img = cv2.add(img1, img2, mask=m)  # 相加时使用掩模
cv2.imshow("use mask", img)  # 展示相加的结果

cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

图像的位运算

图像由像素组成,每个像素可以用十进制整数表示,十进制整数又可以转化为二进制数,所以图像也可以做位运算。OpenCV提供了几种常用的位运算方法:

方法含义
cv2.bitwise_and()按位与
cv2.bitwise_or()按位或
cv2.bitwise_not()按位取反
cv2.bitwise_xor()按位异或

按位与运算

与运算就是按照二进制位进行判断,如果同一位的数字都是1,则运算结果的相同位数字取1,否则取0。OpenCV提供 bitwise_and() 方法来对图像做位与运算。

dst = cv2.bitwise_and(src1, src2, mask)
  • src1: 第一幅图像
  • src2: 第二幅图像
  • mask:(可选)掩模
  • dst: 与运算之后的结果图像

图像做与运算时,会把每一个像素值都转为二进制数,然后让两幅图像相同位置的两个像素值做与运算,最后把运算结果保存在新图像的相同位置上。运算过程如下:

在这里插入图片描述
与运算有两个特点:

  • 如果某像素与纯白色像素做与运算,结果仍然是某像素的原值
  • 如果某像素与纯黑色像素做与运算,结果为纯黑像素

由此可以得出:如果原图像与掩模进行与运算,原图像仅会保留掩模中白色区域所覆盖的内容,其他区域全部变成黑色。

实例6: 花图像与十字掩模做与运算
创建一个掩模,在掩模中央保留一个十字形的白色区域,让掩模与花图像做与运算,查看运算之后的结果。

import cv2
import numpy as np

flower = cv2.imread("3.png")  # 花原始图像
mask = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的掩模图像
mask[135:235, :, :] = 255  # 横着的白色区域
mask[:, 102:203, :] = 255  # 竖着的白色区域
img = cv2.bitwise_and(flower, mask)  # 与运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", mask)  # 展示掩模图像
cv2.imshow("img", img)  # 展示与运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:
在这里插入图片描述

按位或运算

如果同一位的数字都是0,则运算结果的相同位数字取0,否则取1。OpenCV提供bitwise_or()方法来对图像做或运算。

dst = cv2.bitwise_or(src1, src2, mask)
  • src1: 第一幅图像
  • src2: 第二幅图像
  • mask:(可选)掩模
  • dst: 或运算之后的结果图像

运算过程如下:

在这里插入图片描述

或运算有两个特点:

  • 如果某像素与纯白色像素做或运算,结果为纯白色像素
  • 如果某像素与纯黑色像素做或运算,结果仍然是某像素的原值

由此可以得出:如果原图像与掩模进行或运算,原图像仅会保留掩模中黑色区域所覆盖的内容,其他区域全部变成白色。

实例7: 花图像与十字掩模做或运算
创建一个掩模,在掩模中央保留一个十字形的白色区域,让掩模与花图像做或运算。

import cv2
import numpy as np

flower = cv2.imread("3.png")  # 花原始图像
mask = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的掩模图像
mask[135:235, :, :] = 255  # 横着的白色区域
mask[:, 102:203, :] = 255  # 竖着的白色区域
img = cv2.bitwise_or(flower, mask)  # 或运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", mask)  # 展示掩模图像
cv2.imshow("img", img)  # 展示或运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

按位取反运算

取反运算是一种单目运算,仅需一个数字参与运算就可以得出结果。如果运算数某位上数字是0,则运算结果的相同位的数字就取1,如果这一位的数字是1,则运算结果的相同为的数字取0。

dst = cv2.bitwise_not(src, mask)
  • src: 参与运算的图像
  • mask:(可选)掩模
  • dst: 取反运算之后结果图像

运算过程如下:
在这里插入图片描述

实例8: 对花图像进行取反运算

import cv2

flower = cv2.imread("3.png")  # 花原始图像
img = cv2.bitwise_not(flower)  # 取反运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("img", img)  # 展示取反运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

按位异或运算

如果两个运算数同一位上的数字相同,则运算结果的相同位数字取0,否则取1。

dst = cv2.bitwise_xor(src, mask)
  • src: 参与运算的图像
  • mask:(可选)掩模
  • dst: 异或运算之后的结果图像

在这里插入图片描述

异或运算有两个特点:

  • 如果某像素与纯白色像素做异或运算,结果为原像素的取反结果
  • 如果某像素与纯黑色像素做异或运算,结果仍然是某像素的原值

由此可以得出:如果原图像与掩模进行异或运算,掩模白色区域所覆盖的内容呈现取反结果,黑色区域覆盖的内容保持不变。

实例9: 花图像与十字掩模做异或运算

import cv2
import numpy as np

flower = cv2.imread("3.png")  # 花原始图像
m = np.zeros(flower.shape, np.uint8)  # 与花图像大小相等的0值图像
m[135:235, :, :] = 255  # 横着的白色区域
m[:, 102:203, :] = 255  # 竖着的白色区域
img = cv2.bitwise_xor(flower, m)  # 两张图像做异或运算
cv2.imshow("flower", flower)  # 展示花图像
cv2.imshow("mask", m)  # 展示零值图像
cv2.imshow("img", img)  # 展示异或运算结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述
异或运算还有一个特点:执行一次异或运算得到一个结果,再对这个结果执行第二次异或运算,则又会还原成最初的值。利用这个特点可以实现对图像内容的加密和解密。

实例10: 对图像进行加密、解密
利用random.randint()方法创建一个随机像素值图像作为密钥图像,让密钥图像与原始图像做异或运算得出加密运算,再使用密钥图像对加密图像进行解密。

import cv2
import numpy as np

def encode(img, img_key): # 加密、解密方法
    result = img = cv2.bitwise_xor(img, img_key)  # 两图像做异或运算
    return result

flower = cv2.imread("3.png")  # 花原始图像
rows, colmns, channel = flower.shape  # 原图像的行数、列数和通道数
# 创建与花图像大小相等的随机像素图像,作为密钥图像
img_key = np.random.randint(0, 256, (rows, colmns, 3), np.uint8)

cv2.imshow("1", flower)  # 展示花图像
cv2.imshow("2", img_key)  # 展示秘钥图像

result = encode(flower, img_key)  # 对花图像进行加密
cv2.imshow("3", result)  # 展示加密图像
result = encode(result, img_key)  # 对花图像进行解密
cv2.imshow("4", result)  # 展示加密图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

图像位运算的运用

实例11: 粘贴带透明区域的图像
本实例要实现的是将一幅带透明区域的图像粘贴到一幅不透明图像的指定位置

要明确两个问题的处理方法:一个是实现”粘贴“的效果后,让图1中透明元素呈现纯黑色的视觉效果;另一个是如果图1太大,超出了图2的宽、高,那么对超出的像素不做处理。

import cv2
import numpy as np

def overlay_img(background_img, prospect_img, img_over_x, img_over_y):
    back_r, back_c, _ = background_img.shape # 背景图像行数、列数
    if img_over_x>back_c or img_over_x<0 or img_over_y>back_r or img_over_y<0:
        print("前景图不在背景图范围内")
        return background_img
    pro_r, pro_c, _ = prospect_img.shape # 前景图像行数、列数
    if img_over_x + pro_c > back_c: # 如果水平方向展示不全
        pro_c = back_c - img_over_x # 截取前景图的列数
        prospect_img = prospect_img[:, 0:pro_c, :] # 截取前景图
    if img_over_y + pro_r > back_r: # 如果垂直方向展示不全
        pro_r = back_r - img_over_y # 截取前景图的行数
        prospect_img = prospect_img[0:pro_r, :, :] # 截取前景图

    # 前景图转为4通道图像
    prospect_img = cv2.cvtColor(prospect_img, cv2.COLOR_BGR2BGRA)
    # 与背景图像等大的临时前景图层
    prospect_tmp = np.zeros((back_r, back_c, 4), np.uint8)

    # 前景图像放到前景图层里
    prospect_tmp[img_over_y:img_over_y + pro_r,
    img_over_x: img_over_x + pro_c, :] = prospect_img

    # 前景图阈值处理
    _, binary = cv2.threshold(prospect_img, 254, 255, cv2.THRESH_BINARY)
    prospect_mask = np.zeros((pro_r, pro_c, 1), np.uint8) # 单通道前景图像掩模
    prospect_mask[:, :, 0] = binary[:, :, 3] # 不透明像素的值作为掩模的值

    mask = np.zeros((back_r, back_c, 1), np.uint8) # 单通道前景图层的掩模
    # 将前景图像掩模按照坐标参数放到前景图层掩模中
    mask[img_over_y:img_over_y + prospect_mask.shape[0],
    img_over_x: img_over_x + prospect_mask.shape[1]] = prospect_mask

    mask_not = cv2.bitwise_not(mask) # 前景图层掩模取反

    # 前景图层与前景掩模做与运算,抠出前景图有效内容
    prospect_tmp = cv2.bitwise_and(prospect_tmp, prospect_tmp, mask=mask)
    # 背景图像与取反掩模做与运算,清除前景图所占区域的像素值
    background_img = cv2.bitwise_and(background_img, background_img, mask=mask_not)
    # 前景图层转为三通道图像
    prospect_tmp = cv2.cvtColor(prospect_tmp, cv2.COLOR_BGRA2BGR)
    return prospect_tmp + background_img # 前景图层与背景图像相加合并

img = cv2.imread("beach.jpg") # 读取当前项目目录下的图像,作为“背景图像”
img_over = cv2.imread("star.png") # 读取带透明区域的图像,作为“覆盖图像”
img_over_x = 55 # 覆盖图像在背景图像上的横坐标
img_over_y = 3 # 覆盖图像在背景图像上的纵坐标
# 显示粘贴“覆盖图像”后的“背景图像”
cv2.imshow("result", overlay_img(img, img_over, img_over_x, img_over_y))
cv2.waitKey() # 通过按下键盘上的按键
cv2.destroyAllWindows() # 销毁正在显示的窗口

结果如下:

在这里插入图片描述

合并图像

合并图像分两种情况:

  • 两幅图像融合在一起
  • 每幅图像提供一部分内容,将这些内容拼接程一幅图像

OpenCV分别用加权和与覆盖两种方式来满足上述需求。

加权和

多次曝光技术是在一张胶片上拍摄几个影响,最后冲印出的相片会同时具有多个影像的信息。

OpenCV通过计算加权和的方式,按照不同的权重取两幅图像的像素之和,最后组成新图像。加权和不会像纯加法运算那样让图像丢失信息,而是尽量在保留原有图像信息的基础上把两幅图像融合到一起。

dst = cv2.addWeighted(src1, alpha, src2, beta, gamma)
  • src1: 第一幅图像
  • alpha: 第一幅图像的权重
  • src2: 第二幅图像
  • beta: 第二幅图像的权重
  • gamma: 在和结果上添加的标量。该值越大,结果图像越亮,相反则越暗。可以是负数。
  • dst: 叠加之后的图像

实例12: 利用计算加权和的方式实现多次曝光效果
读取两幅不同的风景图像,使用addWeighted()方法计算两幅图像的加权和,两幅图像的权重都为0.6,标量为0,查看处理之后的图像是否为多次曝光结果。

import cv2

sun = cv2.imread("sunset.jpg")  # 日落原始图像
beach = cv2.imread("beach.jpg")  # 沙滩原始图像
rows, colmns, channel = sun.shape  # 日落图像的行数、列数和通道数
beach = cv2.resize(beach, (colmns, rows))  # 沙滩图像缩放成日落图像大小
img = cv2.addWeighted(sun, 0.6, beach, 0.6, 0)  # 计算两幅图像加权和
cv2.imshow("sun", sun)  # 展示日落图像
cv2.imshow("beach", beach)  # 展示沙滩图像
cv2.imshow("addWeighted", img)  # 展示加权和图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:
在这里插入图片描述

实例13: 为图像添加水印效果

import cv2

image = cv2.imread("3.png") # 读取当前项目文件夹下的主图图像
website = cv2.imread("website.png") # 读取当前项目文件夹下的网址图像
# 将网址图像由BGR色彩空间转换为GRAY色彩空间
website_gray = cv2.cvtColor(website, cv2.COLOR_BGR2GRAY)
rows, cols = website_gray.shape # 获取转换为GRAY色彩空间的网址图像的行像素和列像素
# 网址图像的左上角在主图图像内的位置
dx, dy = 272, 71
# 根据网址图像的左上角在主图图像内的位置以及网址图像的行像素和列像素,
# 把主图图像内的相应区域定义为感兴趣区域(roi)
roi = image[dx:dx + rows, dy:dy + cols]
# 将网址图像与主图图像的感兴趣区域进行图像加权和运算
add = cv2.addWeighted(website, 0.2, roi, 1.0, 1)
# 把进行图像加权和运算后的结果混合到主图图像内
image[dx:dx + rows, dy:dy + cols] = add
cv2.imshow("result", image) # 窗口显示网址图像与主图图像混合后的图像
cv2.waitKey() # 按下键盘上的任意按键后
cv2.destroyAllWindows() # 销毁显示图像的所有窗口

结果如下:

在这里插入图片描述

覆盖

覆盖图像就是直接把前景图像显示在背景图像中,前景图像会挡住背景图像。覆盖之后背景图像会丢失信息,不会出现加权和那样的多次曝光的效果。

OpenCV没有提供覆盖操作的方法,我们可以直接用修改图像像素值的方式实现图像的覆盖、拼接效果:从A图像中取像素值,直接复制给B图像的像素,这样就能在B图像中看到A图像的信息了。实例13中的

image[dx:dx + rows, dy:dy + cols] = add

这行代码就是一个例子,直接将像素赋值,简单粗暴。

如果前景图像时4通道(含alpha通道)图像,就不能使用上面例子中直接替换整个区域的方式覆盖背景图像了。因为前景图像中有透明的像素,透明的像素不应该挡住背景,所以在给背景图像像素赋值时应该排除所有透明的前景像素。

实例14: 拼接禁止吸烟图像
不要把前景图像的透明像素覆盖到背景图像上。覆盖之前要遍历前景图像中的每一个像素,如果像素的alpha通道值为0,表示该像素是透明像素,就要停止操作该像素。

import cv2

# 拼接图像方法
def overlay_img(img, img_over, img_over_x, img_over_y):
    img_h, img_w, img_p = img.shape  # 背景图像宽、高、通道数
    img_over_h, img_over_w, img_over_c = img_over.shape  # 覆盖图像宽、高、通道数
    if img_over_c <= 3:  # 通道数小于等于3
        img_over = cv2.cvtColor(img_over, cv2.COLOR_BGR2BGRA)  # 转换成4通道图像
    for w in range(0, img_over_w):  # 遍历列
        for h in range(0, img_over_h):  # 遍历行
            if img_over[h, w, 3] != 0:  # 如果不是全透明的像素
                for c in range(0, 3):  # 遍历三个通道
                    x = img_over_x + w  # 覆盖像素的横坐标
                    y = img_over_y + h  # 覆盖像素的纵坐标
                    if x >= img_w or y >= img_h:  # 如果坐标超出最大宽高
                        break
                    img[y, x, c] = img_over[h, w, c]  # 覆盖像素
    return img

smoking = cv2.imread("smoking.png", cv2.IMREAD_UNCHANGED)  # 吸烟图像,保持原格式
no_img = cv2.imread("no.png", cv2.IMREAD_UNCHANGED)  # 禁止图像,保持原格式
cv2.imshow("smoking", smoking)  # 展示禁止图像
img = overlay_img(smoking, no_img, 95, 90)  # 将禁止图像覆盖到吸烟图像之上
cv2.imshow("no smoking", img)  # 展示覆盖结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下;

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/960171.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++从0到王者】第二十五站:多继承的虚表

文章目录 前言一、多继承的虚函数表二、菱形继承与菱形虚拟继承的虚函数表1.菱形继承2.菱形虚拟继承的虚函数表 三、抽象类1.抽象类的概念2.接口继承与实现继承 总结 前言 其实关于单继承的虚函数表我们在上一篇文章中已经说过了&#xff0c;就是派生类中的虚表相当于拷贝了一…

注意!CSPM换证工作于9月6日起转为线上开展!

之前胖圆给大家介绍了CSPM的相关信息&#xff0c;CSPM换证也将于9月6日起转成线上申请&#xff01;不用再快递资料了&#xff01;更加方便快捷&#xff01; CSPM-3考试也将于10月28日进行&#xff01;已经通过PMP的小伙伴可以考CSPM-3&#xff0c;CSPM-4了&#xff01;具体考试…

虚拟机安装aix 7.2

虚拟机安装aix 7.2 环境安装参考 环境 kali 2023 aix7.2镜像 https://archive.org/details/aix_7200-04-02-2027_072020安装 apt install qemu-system qemu-img create -f qcow2 aix-hdd.qcow2 20G qemu-system-ppc64 -cpu POWER8 -machine pseries -m 4G -serial mon:stdio…

什么是认证标志证书(VMC证书)?

认证标志证书&#xff08;VMC证书&#xff09;是电子邮件营销和安全的重要组成部分&#xff0c;Gmail、Yahoo Mail 、Fastmail 以及Apple Mail等知名邮箱供应商均支持认证标志证书&#xff08;以下简称VMC证书&#xff09;。那么什么是VMC证书呢&#xff1f;VMC证书有什么作用呢…

Navicat15天试用期过期解决办法

如果你是windows电脑&#xff0c;发现过期了先把Nvaicat关掉&#xff0c;按照以下步骤可以恢复到15天试用。 1.注册表输入regedit winR打开注册表 2.搜索输入HKEY_CURRENT_USER\Software\PremiumSoft\Navicat 删除Registration15XCS和Update这两个文件夹。 3.搜索HKEY_CURRE…

数据并行 - DP/DDP/ZeRO

数据并行DP 数据并行的核心思想是&#xff1a;在各个GPU上都拷贝一份完整模型&#xff0c;各自吃一份数据&#xff0c;算一份梯度&#xff0c;最后对梯度进行累加来更新整体模型。理念不复杂&#xff0c;但到了大模型场景&#xff0c;巨大的存储和GPU间的通讯量&#xff0c;就…

【OpenCV实战】4.OpenCV 五种滤波使用实战(均值、盒状、中值、高斯、双边)

OpenCV 五种滤波使用实战(均值、盒状、中值、高斯、双边&#xff09; 〇、Coding实战内容一、滤波、核和卷积1.1 滤波1.2 核 & 滤波器1.3 公式1.4 例子 二、图片边界填充实战2.1 解决问题2.2 相关OpenCV函数2.3 Code 三. 均值滤波实战3.1 理论3.2 Blur3.3 Code 四. 盒状滤波…

集成跨境电商ERP(积加、易仓、马帮等)连接多个应用

场景描述&#xff1a; 基于跨境电商开放平台&#xff08;积加、易仓、马帮等&#xff09;能力&#xff0c;无代码集成跨境电商ERP与多个应用互通互连。通过Aboter可搭建业务自动化流程&#xff0c;实现多个应用之间的数据连接。 连接器&#xff1a; 积加ERP马帮ERP易仓ERP……

Visual Studio Code 终端配置使用 MySQL

Visual Studio Code 终端配置使用 MySQL 找到 MySQL 的 bin 目录 在导航栏中搜索–》服务 找到MySQL–>双击 在终端切换上面找到的bin目录下输入指令 终端为Git Bash 输入命令 ./mysql -u root -p 接着输入密码&#xff0c;成功在终端使用 MySQL 数据库。

【LLM】快速开始 LangChain

theme: orange LangChain是一个软件开发工具包&#xff0c;它通过将组件链接在一起并公开简单统一的API&#xff0c;简化了大型语言模型和应用程序的集成。本篇文章将会简要介绍&#xff0c;让各位开发者对其有一个整体的认识。 前言 如果你是一名软件开发人员&#xff0c;努力…

chatGPT讲师AIGC讲师叶梓:大模型这么火,我们在使用时应该关注些什么?-5

以下为叶老师讲义分享&#xff1a; P20-P24 顺便看看某大模型觉得“两头蛇”长啥样&#xff1f; “羊驼-2”的神逻辑 欣赏一下GPT-4给出的满分答案 提示工程的模式 1、说明模式下&#xff0c;您为 ChatGPT 输入内容来解释或阐明一个概念或理论。 它的主要功能是定义各种概念。…

设计封面有诀窍,这5个实用软件让你快人一步

每位作者和出版商都梦想着为他们的作品设计一个引人注目的封面。这样一来&#xff0c;潜在的读者才会被吸引&#xff0c;愿意拿起这本书来阅读&#xff0c;从而提高书籍的销售量。这正是封面设计软件发挥作用的地方。专业的封面设计软件能够添加前沿的效果&#xff0c;以呈现书…

使用代理服务器和pip安装软件包

在开着代理服务器的情况下&#xff0c;直接pip install 软件包名会出现如下错误&#xff0c; WARNING: Retrying (Retry(total4, connectNone, readNone, redirectNone, statusNone)) after connection broken by SSLError(SSLZeroReturnError(6, TLS/SSL connection has been…

【Cadence】Calculator计算sp的3dB带宽

【Cadence】Calculator计算sp的3dB带宽 1.计算最大增益2.cross函数3. 3dB带宽 下面演示如何在Cadence计算s参数&#xff08;如增益&#xff09;的3dB带宽 1.计算最大增益 ymax函数 2.cross函数 cross函数可以计算经过y轴给定值对应的x坐标 edge number选择1是经过的第一个点…

B081-Lucene+ElasticSearch

目录 认识全文检索概念lucene原理全文检索的特点常见的全文检索方案 Lucene创建索引导包分析图代码 搜索索引分析图代码 ElasticSearch认识ElasticSearchES与Kibana的安装及使用说明ES相关概念理解和简单增删改查ES查询DSL查询DSL过滤 分词器IK分词器安装测试分词器 文档映射(字…

火热报名中 | 网安朝阳·西门子白帽黑客大赛燃爆来袭

2022年 首届西门子白帽黑客大赛 集结全国网安精英 以热爱之名 引爆整个夏天 2023年 网安朝阳西门子白帽黑客大赛—— 国际精英挑战赛 再度重磅归来 网安骑士的荣耀角斗场 等你来战 赛宁网安持续为第二届赛事 提供全程服务支持 热血战役 即将打响 报名通道现已开启…

风险评估

风险评估概念 风险评估是一种系统性的方法&#xff0c;用于识别、评估和量化潜在的风险和威胁&#xff0c;以便组织或个人能够采取适当的措施来管理和减轻这些风险。 风险评估的目的 风险评估要素关系 技术评估和管理评估 风险评估分析原理 风险评估服务 风险评估实施流程

SQLAlchemy 封装的工具类,数据库pgsql(数据库连接池)

1.SQLAlchemy是什么&#xff1f; SQLAlchemy 是 Python 著名的 ORM 工具包。通过 ORM&#xff0c;开发者可以用面向对象的方式来操作数据库&#xff0c;不再需要编写 SQL 语句。 SQLAlchemy 支持多种数据库&#xff0c;除 sqlite 外&#xff0c;其它数据库需要安装第三方驱动。…

专访远航汽车远勤山:踏踏实实做好产品 直面挑战乘风远航

8月25日&#xff0c;第二十六届成都国际汽车展览会在中国西部国际博览城隆重开幕。车展举办期间&#xff0c;远航汽车董事长远勤山先生、产品研发总监王震先生向媒体分享了远航汽车品牌发展、产品研发、技术创新以及市场布局等内容。 “通过我们的付出和努力&#xff0c;让我们…

景芯SoC 芯片全流程培训

【全网唯一】景芯SoC是一款用于芯片全流程培训的低功耗ISP图像处理SoC&#xff0c;采用低功耗RISC-V处理器&#xff0c;内置ITCM SRAM、DTCM SRAM&#xff0c;集成包括MIPI、ISP、CNN、QSPI、UART、I2C、GPIO、百兆以太网等IP&#xff0c;采用SMIC40工艺设计流片。 培训数据包括…