面经:微服务

news2024/11/17 11:42:48

文章目录

  • 参考资料
  • 一. 微服务概述
    • 1. CAP理论
    • 2. BASE理论
    • 3. SpringBoot 与 SpringCloud对比
  • 二. 服务注册:Zookeeper,Eureka,Nacos,Consul
    • 1. Nacos两种健康检查方式?
    • 2. nacos中负责负载均衡底层是如何实现的
    • 3. Nacos原理
    • 4. 临时实例和持久化(非临时)实例
  • 三. 服务调用:Feign
    • 1. Feign的底层原理
    • 2. Feign与OpenFeign的区别
  • 四. 负载均衡:Ribbon
    • 1. Ribbon支持哪几种负载均衡策略
  • 五. 网关:Gateway,Zuul
    • 1. Gateway工作流程
    • 2. Spring Cloud Gateway 的路由和断言是什么关系?
    • 3. Spring Cloud Gateway 如何实现动态路由?
    • 4. Spring Cloud Gateway 支持限流吗?
  • 六. 限流/熔断/服务降级:Hystrix,Sentinel
    • 1. 什么是熔断和降级?
    • 2. 限流
      • 2.1 常见算法
      • 2.2 单机限流
      • 2.3 分布式限流
    • 3. Hystrix和Sentinel简单介绍

参考资料

概述,总结的很好

一. 微服务概述

添加链接描述

1. CAP理论

  • 一致性(Consistency)
    所有节点访问同一份最新的数据副本
  • 可用性(Availability)
    非故障的节点在合理的时间内返回合理的响应(不是错误或者超时的响应)。
  • 分区容错性(Partition Tolerance)
    分布式系统出现网络分区的时候,仍然能够对外提供服务。
  • 网络分区
    分布式系统中,多个节点之间的网络本来是连通的,但是因为某些故障(比如部分节点网络出了问题)某些节点之间不连通了,整个网络就分成了几块区域,这就叫 网络分区。
    在这里插入图片描述
  • 3选2
    分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。 比如 ZooKeeper、HBase 就是 CP 架构,Cassandra、Eureka 就是 AP 架构,Nacos 不仅支持 CP 架构也支持 AP 架构。
  • 为什么不支持CA
    若系统出现“分区”,系统中的某个节点在进行写操作。为了保证 C, 必须要禁止其他节点的读写操作,这就和 A 发生冲突了。如果为了保证 A,其他节点的读写操作正常的话,那就和 C 发生冲突了。
    选择 CP 还是 AP 的关键在于当前的业务场景,没有定论,比如对于需要确保强一致性的场景如银行一般会选择保证 CP 。
    另外,需要补充说明的一点是:如果网络分区正常的话(系统在绝大部分时候所处的状态),也就说不需要保证 P 的时候,C 和 A 能够同时保证。

2. BASE理论

  • 概述
    即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。BASE 理论本质上是对 CAP 的延伸和补充,更具体地说,是对 CAP 中 AP 方案的一个补充。
    如果系统没有发生“分区”的话,节点间的网络连接通信正常的话,也就不存在 P 了。这个时候,我们就可以同时保证 C 和 A 了。因此,如果系统发生“分区”,我们要考虑选择 CP 还是 AP。如果系统没有发生“分区”的话,我们要思考如何保证 CA。
    因此,AP 方案只是在系统发生分区的时候放弃一致性,而不是永远放弃一致性。在分区故障恢复后,系统应该达到最终一致性。这一点其实就是 BASE 理论延伸的地方。
  • 基本可用BA
    基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性(响应时间上的损失/系统功能上的损失)。但是,这绝不等价于系统不可用。
  • 软状态S
    软状态指允许系统中的数据存在中间状态(CAP 理论中的数据不一致),并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
  • 最终一致性E
    最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

3. SpringBoot 与 SpringCloud对比

  • SpringBoot专注于快速方便得开发单个个体微服务。
  • SpringCloud是关注全局的微服务协调整理治理框架,它将SpringBoot开发的一个个单体微服务整合并管理起来,为各个微服务之间提供,配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等集成服务
  • SpringBoot可以离开SpringCloud独立使用开发项目, 但是SpringCloud离不开SpringBoot,属于依赖的关系.
  • SpringBoot专注于快速、方便得开发单个微服务个体,SpringCloud关注全局的服务治理框架。

二. 服务注册:Zookeeper,Eureka,Nacos,Consul

1. Nacos两种健康检查方式?

(在nacos中服务提供者是如何向nacos注册中心续约的)
(对于nacos服务来讲它是如何判断服务实例的状态的)

  • agent上报模式 (心跳模式,临时实例)
    客户端(注册在nacos上的其它微服务实例)健康检查。
    客户端通过心跳上报方式告知服务端(nacos注册中心)健康状态;默认心跳间隔5秒;
    nacos会在超过15秒未收到心跳后将实例设置为不健康状态;超过30秒将实例删除;
  • 服务端主动检测(非临时实例)
    服务端健康检查。
    nacos主动探知客户端健康状态,默认间隔为20秒;健康检查失败后实例会被标记为不健康,不会被立即删除。

2. nacos中负责负载均衡底层是如何实现的

通过Ribbon实现,Ribbon中定义了负载均衡算法,然后基于这些算法从服务实例中获取一个实例为想要服务方提供服务

3. Nacos原理

在这里插入图片描述
Nacos的实现原理
1.客户端provider向nacos server的open api发起调用,把自己的服务地址链接,服务名称注册上去
2.nacos server与服务提供者provider建立心跳机制,用来检测服务状态
3.服务消费者consumer查询出提供服务实例列表
4.并且默认10s去nacos server拉取服务实例列表
5.当服务消费者检测到服务异常,基于UDP协议推送更新
6.服务消费者即可调用了

4. 临时实例和持久化(非临时)实例

临时和持久化的区别主要在健康检查失败后的表现,持久化实例健康检查失败后会被标记成不健康,而临时实例会直接从列表中被删除。

三. 服务调用:Feign

1. Feign的底层原理

首先,如果你对某个接口定义了**@FeignClient注解**,Feign就会针对这个接口创建一个动态代理
接着你要是调用那个接口,本质就是会调用 Feign创建的动态代理,这是核心中的核心
Feign的动态代理会根据你在接口上的@RequestMapping等注解,来动态构造出你要请求的服务的地址
最后针对这个地址,发起请求、解析响应
在这里插入图片描述

2. Feign与OpenFeign的区别

  • 他们底层都是内置了Ribbon,去调用注册中心的服务。
  • Feign是Netflix公司写的,是SpringCloud组件中的一个轻量级RESTful的HTTP服务客户端,是SpringCloud中的第一代负载均衡客户端。
  • OpenFeign是SpringCloud自己研发的,在Feign的基础上支持了Spring
    MVC的注解
    ,如@RequesMapping等等。是SpringCloud中的第二代负载均衡客户端。
  • Feign本身不支持Spring MVC的注解,使用Feign的注解定义接口,调用这个接口,就可以调用服务注册中心的服务
  • OpenFeign的@FeignClient可以解析SpringMVC的@RequestMapping注解下的接口,并通过动态代理的方式产生实现类,实现类中做负载均衡并调用其他服务。

四. 负载均衡:Ribbon

1. Ribbon支持哪几种负载均衡策略

在这里插入图片描述

五. 网关:Gateway,Zuul

1. Gateway工作流程

在这里插入图片描述
路由判断:客户端的请求到达网关后,先经过 Gateway Handler Mapping 处理,这里面会做断言(Predicate)判断,看下符合哪个路由规则,这个路由映射后端的某个服务。
请求过滤:然后请求到达 Gateway Web Handler,这里面有很多过滤器,组成过滤器链(Filter Chain),这些过滤器可以对请求进行拦截和修改,比如添加请求头、参数校验等等,有点像净化污水。然后将请求转发到实际的后端服务。这些过滤器逻辑上可以称作 Pre-Filters,Pre 可以理解为“在…之前”。
服务处理:后端服务会对请求进行处理。
响应过滤:后端处理完结果后,返回给 Gateway 的过滤器再次做处理,逻辑上可以称作 Post-Filters,Post 可以理解为“在…之后”。
响应返回:响应经过过滤处理后,返回给客户端。

2. Spring Cloud Gateway 的路由和断言是什么关系?

在这里插入图片描述
一对多:一个路由规则可以包含多个断言。如上图中路由 Route1 配置了三个断言 Predicate。
同时满足:如果一个路由规则中有多个断言,则需要同时满足才能匹配。如上图中路由 Route2 配置了两个断言,客户端发送的请求必须同时满足这两个断言,才能匹配路由 Route2。
第一个匹配成功:如果一个请求可以匹配多个路由,则映射第一个匹配成功的路由。如上图所示,客户端发送的请求满足 Route3 和 Route4 的断言,但是 Route3 的配置在配置文件中靠前,所以只会匹配 Route3。

3. Spring Cloud Gateway 如何实现动态路由?

Spring Cloud Gateway 作为微服务的入口,需要尽量避免重启,而现在配置更改需要重启服务不能满足实际生产过程中的动态刷新、实时变更的业务需求,所以我们需要在 Spring Cloud Gateway 运行时动态配置网关。
实现动态路由的方式有很多种,其中一种推荐的方式是基于 Nacos 配置中心来做。简单来说,我们将将路由配置放在 Nacos 中存储,然后写个监听器监听 Nacos 上配置的变化,将变化后的配置更新到 GateWay 应用的进程内
其实这些复杂的步骤并不需要我们手动实现,通过 Nacos Server 和 Spring Cloud Alibaba Nacos Config 即可实现配置的动态变更。

4. Spring Cloud Gateway 支持限流吗?

Spring Cloud Gateway 自带了限流过滤器,对应的接口是 RateLimiter,RateLimiter 接口只有一个实现类 RedisRateLimiter (基于 Redis + Lua 实现的限流),提供的限流功能比较简易且不易使用。
从 Sentinel 1.6.0 版本开始,Sentinel 引入了 Spring Cloud Gateway 的适配模块,可以提供两种资源维度的限流:route 维度和自定义 API 维度。也就是说,Spring Cloud Gateway 可以结合 Sentinel 实现更强大的网关流量控制。

六. 限流/熔断/服务降级:Hystrix,Sentinel

1. 什么是熔断和降级?

  • 熔断机制
    服务熔断的作用类似于我们家用的保险丝,当某服务出现不可用或响应超时的情况时,为了防止整个系统出现雪崩,暂时停止对该服务的调用。
  • 服务降级
    服务降级是从整个系统的负荷情况出发和考虑的,对某些负荷会比较高的情况,为了预防某些功能(业务场景)出现负荷过载或者响应慢的情况,在其内部暂时舍弃对一些非核心的接口和数据的请求,而直接返回一个提前准备好的fallback(退路)错误处理信息。这样,虽然提供的是一个有损的服务,但却保证了整个系统的稳定性和可用性。
  • 相同点
    目标一致 都是从可用性和可靠性出发,为了防止系统崩溃;
    用户体验类似 最终都让用户体验到的是某些功能暂时不可用;
  • 不同点
    触发原因不同:服务熔断一般是某个服务(下游服务)故障引起,而服务降级一般是从整体负荷考虑

2. 限流

2.1 常见算法

  • 固定窗口计数器算法
    在这里插入图片描述
  • 滑动窗口计数器算法
    在这里插入图片描述
  • 漏桶算法
    在这里插入图片描述
  • 令牌桶算法
    在这里插入图片描述

2.2 单机限流

单机限流可以直接使用 Google Guava 自带的限流工具类 RateLimiter 。 RateLimiter 基于令牌桶算法,可以应对突发流量。

2.3 分布式限流

(1) 借助中间件架限流:可以借助 Sentinel 或者使用 Redis 来自己实现对应的限流逻辑。
(2)网关层限流:比较常用的一种方案,直接在网关层把限流给安排上了。不过,通常网关层限流通常也需要借助到中间件/框架。就比如 Spring Cloud Gateway 的分布式限流实现RedisRateLimiter就是基于 Redis+Lua 来实现的,再比如 Spring Cloud Gateway 还可以整合 Sentinel 来做限流。

3. Hystrix和Sentinel简单介绍

在这里插入图片描述

  • Hystrix:发起请求是通过Hystrix的线程池来走的,不同的服务走不同的线程池,实现了不同服务调用的隔离,避免了服务雪崩的问题
  • Sentinel是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/957618.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微信小程序校园生活小助手+后台管理系统|前后分离VUE

《微信小程序校园生活小助手后台管理系统|前后分离VUE》该项目含有源码、文档等资料、配套开发软件、软件安装教程、项目发布教程等 本系统包含微信小程序前台和Java做的后台管理系统,该后台采用前后台前后分离的形式使用JavaVUE 微信小程序——前台涉及技术&#…

【RISC-V】RISC-V寄存器

一、通用寄存器 32位RISC-V体系结构提供32个32位的整型通用寄存器寄存器别名全称说明X0zero零寄存器可做源寄存器(rs)或目标寄存器(rd)X1ra链接寄存器保存函数返回地址X2sp栈指针寄存器指向栈的地址X3gp全局寄存器用于链接器松弛优化X4tp线程寄存器常用于在OS中保存指向进程控…

金融风控数据分析-信用评分卡建模(附数据集下载地址)

本文引用自: 金融风控:信用评分卡建模流程 - 知乎 (zhihu.com) 在原文的基础上加上了一部分自己的理解,转载在CSDN上作为保留记录。 本文涉及到的数据集可直接从天池上面下载: Give Me Some Credit给我一些荣誉_数据集-阿里云…

数字化新零售平台系统提供商,门店商品信息智慧管理-亿发进销存

传统的批发零售业务模式正面临着市场需求变化的冲击。用户日益注重个性化、便捷性和体验感,新兴的新零售模式迅速崛起,改变了传统的零售格局。如何在保持传统业务的基础上,变革发展,成为了业界亟需解决的问题。 在这一背景下&…

Abaqus三维随机多面体插件—AbyssFish – Random Polyhedron Aggregate

插件介绍 AbyssFish – Random Polyhedron Aggregate 插件可在Abaqus软件内批量生成随机分布的三维多面体骨料模型。插件可指定骨料分布的区域、三种尺寸的粒径分布范围、多面体面数、各尺寸骨料的数量等信息,同时可控制骨料间的最小间距及插件的运行时间控制。 使…

Linux常用工具(pidstat stress cgroup)

目录 1.pidstat 2.stress 3.cgroup 4.使用cgroup进行内存限制 5.使用cgroup进行cpu使用率控制 1.pidstat 安装和使用(centos): yum install sysstats yum remove sysstats pidstat -u(默认),查看进程cpu使用情况: pidstat …

Spring MVC: 请求参数的获取

Spring MVC 前言通过 RequestParam 注解获取请求参数RequestParam用法 通过 ServletAPI 获取请求参数通过实体类对象获取请求参数附 前言 在 Spring MVC 介绍中,谈到前端控制器 DispatcherServlet 接收客户端请求,依据处理器映射 HandlerMapping 配置调…

解决 beego上传文件时 报http: no such file 错误

上传时文件上传失败: 关键报错的代码: //获得文件名filename := header.Filename//上传文件//注意,这里SaveToFile参数要跟传入的文件名的key一致,否则就会报http: no such fileerr = f.SaveToFile(filename, "./static/file/"+filename)if err != nil {logs.Error(e…

大数据课程K13——Spark的距离度量相似度度量

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Spark的距离度量和相似度度量; ⚪ 掌握Spark的欧氏距离; ⚪ 掌握Spark的曼哈顿距离; ⚪ 掌握Spark的切比雪夫距离; ⚪ 掌握Spark的最小二乘法; 一、距离度量和相似度度量 1. …

linux系统(centos、Ubuntu、银河服务器)备份

制作u盘启动盘 下载usblive系统镜像 Get Kali | Kali Linux 下载u盘启动工具 balenaEtcher - Flash OS images to SD cards & USB drives 点击下载,等待下载完成 双击安装,等待安装完成 双击 启动 选择镜像 选择U盘 开始烧录 等地制作完成 进入…

PowerBuilder连接SQLITE3

PowerBuilder,一个古老的IDE,打算陆续发些相关的,也许还有人需要,内容可能涉及其他作者,但基本都是基于本人实践整理,如涉及归属,请联系. SQLite,轻型数据库,相对与PowerBuilder来说是个新事务,故发数来,以供参考. PB中使用OLE Microsoft OLE DB方式进行连接,如下 // Profile…

苹果启动2024年SRDP计划:邀请安全专家使用定制iPhone寻找漏洞

苹果公司昨天(8月30日)正式宣布开始接受2024 年iPhone安全研究设备计划的申请,iOS 安全研究人员可以在 10 月底之前申请安全研究设备 SRD。 SRD设备是专门向安全研究人员提供的iPhone14Pro,该设备具有专为安全研究而设计的特殊硬…

Message: ‘chromedriver‘ executable may have wrong permissions.

今天运行项目遇到如下代码 driverwebdriver.Chrome(chrome_driver, chrome_optionsoptions)上述代码运行报错如下: Message: chromedriver executable may have wrong permissions. Please see https://sites.google.com/a/chromium.org/chromedriver/home出错的原…

ROS2学习(一):Ubuntu 22.04 安装 ROS2(Iron Irwini)

文章目录 一、ROS2(Iron Irwini)介绍二、ROS2(Iron Irwini)安装1.设置编码2.使能代码库3.安装ROS2 Iron 三、ROS2测试四、ROS2卸载 一、ROS2(Iron Irwini)介绍 官方文档 Iron Irwini版本支持的平台如下: 二、ROS2(Iron Irwini)安装 1.设置编码 sudo apt update…

MyBatis——MyBatis插件原理

摘要 本博文主要介绍MyBatis插件机原理,帮助大家更好的理解和学习MyBatis。 一、插件机制概述 MyBatis 允许你在已映射语句执行过程中的某一点进行拦截调用。默认情况下,MyBatis允许使用插件来拦截的方法调用包括: Executor (update, que…

高级IO(select、poll、epoll)

在介绍本文之前,先提出一个问题 什么是IO? 等数据拷贝 1.等 - IO事件就绪(检测功能成分) 2.数据拷贝 高效的IO就是:单位时间,等的比重越小,IO的效率越高 五种IO模型 IO模型: 阻塞式…

仓库运行状况如何得知?数据挖掘是关键!

库存、订单、出入库记录、物流信息、货物状态等数据,是仓库管理的重要组成部分。 仓库数据的重要性 做好仓库数据管理对企业的重要性不言而喻。通过有效地管理数据,企业可以更好地了解市场需求和库存情况,快速响应市场变化,提高库…

iOS开发Swift-5-自动布局AutoLayout-摇骰子App

1.在iOS坐标系中,以向左、向下为正方向。图片以左上角为基准点。 2.打开之前的摇骰子App,对它的界面做一些适应所有iPhone机型的效果。 3.先对上方logo做一个y轴约束和一个宽高约束。 宽高约束: 水平居中: 对y轴进行约束。将虚线点…

【STM32单片机】STM32F103RCT6 串口1 串口2 串口3 串口4 串口5 初始化,标准库 ,支持printf

文章目录 单片机介绍引脚DMA—直接存储器访问串口 引脚串口1,初始化,发送与接收串口2,初始化,发送与接收串口3,初始化,发送与接收串口4,初始化,发送与接收串口5,初始化&a…

说说Flink on yarn的启动流程

分析&回答 核心流程 FlinkYarnSessionCli 启动的过程中首先会检查Yarn上有没有足够的资源去启动所需要的container,如果有,则上传一些flink的jar和配置文件到HDFS,这里主要是启动AM进程和TaskManager进程的相关依赖jar包和配置文件。接着…