MOS的减速加速电路设计

news2024/10/7 2:28:09

引言:在开始讲解MOS的减速加速电路之前,我们还是先来回顾MOS开启与关闭的根本机制。以NMOS为例,开启NMOS本质是对G极进行充电,至Cgs电荷充满,G极才会达到控制端电平值或者开启阈值,关断NMOS时,GS电荷需要泄放,至电荷泄放完毕,G极才会达到GND或者关断阈值(传送门:MOS-1:MOS的寄生模型)。对于PMOS,这个过程则反过来,对G极充电关断,G极放电开启。

第二点,需要理解MOS的开启与关断是一个动态的过程,持续关断或者开启期间视作稳态,控制端与G极电平相同,但开启与关断瞬间,控制端与G极的电平不同,G极的电平变化始终慢于控制端的电平变化,因此电平不同就会导致G极电流的流动,或流入G极或流出G极。

所以减速加速NMOS的根本机制就是:快速开启NMOS--->增大流入G极的电流;减速开启NMOS--->减小流入G极的电流;快速关断NMOS--->加速释放G极电荷;减速关断NMOS--->减速释放G极电荷(PMOS是一个逆过程)。

€1.栅极电阻

因为栅极电阻直接控制了栅极电流的大小,所以开关速度随栅极电阻值大小而变化。

增加栅极电阻值会减慢MOSFET的开关速度,并增加其开关损耗。降低栅极电阻值会增加MOSFET的开关速度,但由于导线杂散电感等因素的影响,可能导致在其漏极和源极端子之间施加浪涌电压,因此有必要选择最佳的栅极电阻。

不同的栅极电阻可以用于MOSFET的不同的开启/关闭速度要求,图16-1是如何使用不同的栅极电阻来开启和关闭的一个示例。

图片

图16-1:驱动和关闭NMOS的不同路径

开启NMOS时,电流经过R1从控制端流向G极,关闭NMOS时,电流经过R2从G极流向控制端,此时调整R1和R2的值就可以实现开启和关闭的某一个要求的速度差。

图片

图16-2:栅极电阻的更多配置

图16-2示例了栅极电阻的另外两种用法,图16-2左导通时栅极电阻器:R1和R2并联,关断时的栅电阻器:R2,这样可以做到开启较快,关断较慢;图16-2右导通时栅极电阻:R1,关断时的栅极电阻:R1和R2并联,这样可以做到开启较慢,关断较快。

€2.加速关断二极管

对于NMOS,关断电流比较大时,能使MOSFET输入电容放电速度更快,从而降低关断损耗。大的放电电流可以通过选择的低输出阻抗的MOSFET或电压器件来实现,最常用的就是如图16-3的加速二极管。

图片

图16-3:加速二极管的使用示例

栅极关断时,电流在电阻R1上产生的压降大于二极管D1的导通压降,这时二极管会导通,从而将电阻进行旁路,随着电流的减小,二极管在电路中的作用越来越小。该电路作用会显著的减小MOSFET关断的延迟时间,但是这个电路有一定的缺点,那就是栅极的电流仍然需要流过IC内部的输出驱动阻抗。

€3.PNP加速关断驱动电路

上面两节相对于无栅极电阻的开关速度还是偏慢,更快的关断方式则是主动“汲取”或者“灌入”电流。如图16-4使用PNP加速NMOS关断,开启时电流通过二极管D,关断时则利用PNP三极管主动从G极汲取电流。

图片

图16-4:PNP加速NMOS关断

图16-5展示了PNP加速NMOS关断的动态过程电流流向。左图在控制端从低电平往高电平切换时,Vbe>0,Q2关断,充电电流从二极管D流入,Q1开启;右图在控制端从高电平往低电平切换时,G极电平不会瞬间变化,此时Vbe<-0.7V,Q2导通,Q2快速将电荷从G极汲取走,使G极电平快速下降,达到Q1快速关断的目的。

图片

图16-5:PNP加速NMOS关断的动态过程

PNP加速关断电路是目前应用最多的电路,在加速三极管的作用下可以实现瞬间的栅源短路,从而达到最短的放电时间。之所以加二极管,一方面是保护三极管基极,另一方面是为导通电流提供回路及偏置。

该电路的优点为可以近似达到推拉的效果,加速效果明显。缺点是栅极由于经过两个PN节,不能使栅极真正的达到0V(GND),但电压很低,不影响NMOS的完全关断。

€4.NPN加速关断驱动电路

图16-6是使用NPN加速PMOS关断的电路,关断时电流通过二极管D,导通时则利用NPN三极管主动往G极灌入电流。

图片

图16-6:NPN加速PMOS关断

图16-7展示了NPN加速PMOS关断的动态过程电流流向。左图在控制端从高电平往低电平切换时,Vbe<0,Q1关断,放电电流从二极管D流出,Q2开启;右图在控制端从低电平往高电平切换时,G极电平不会瞬间变化,此时Vbe>0.7V,Q1导通,Q1快速将电荷从G极灌入,使G极电平快速上升,达到Q2快速关断的目的。

图片

图16-7:NPN加速PMOS关断的动态过程

小结:

1#:关于基极电阻的大小选择,这在前面其实已经提到过,不建议使用K级别的电阻,常用阻值在3.3Ω/10Ω/33欧姆等等。除非有很明确的需求,根据欧姆定律计算出基极电流,然后匹配充电时间。

2#:而使用PNP和NPN的加速,使用小信号三极管即可,其参数取决于MOS的开启关断阈值,控制端的电平高低,ID基本都可以满足G极要求。

3#:减速加速在高频信号调理,大功率多相电源时使用比较多。

4#:以上几种电路使用Pspice进行仿真,可以直观的得到性能差异(后续会有Pspice仿真章节补充此项)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/956983.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式开发之syslog和rsyslog构建日志记录

1.syslogd作客户端 BusyBox v1.20.2 (2022-04-06 16:19:14 CST) multi-call binary.Usage: syslogd [OPTIONS]System logging utility-n Run in foreground-O FILE Log to FILE (default:/var/log/messages)-l N Log only messages more urge…

QT DAY 2

window.cpp #include "window.h" #include<QDebug> #include<QIcon> Window::Window(QWidget *parent) //构造函数的定义: QWidget(parent) //显性调用父类的构造函数 {//this->resize(430,330);this->resize(QSize(800,600));// this…

音视频入门基础理论知识

文章目录 前言一、视频1、视频的概念2、常见的视频格式3、视频帧4、帧率5、色彩空间6、采用 YUV 的优势7、RGB 和 YUV 的换算 二、音频1、音频的概念2、采样率和采样位数①、采样率②、采样位数 3、音频编码4、声道数5、码率6、音频格式 三、编码1、为什么要编码2、视频编码①、…

无涯教程-Android - CheckBox函数

CheckBox是可以由用户切换的on/off开关。为用户提供一组互不排斥的可选选项时,应使用复选框。 CheckBox 复选框属性 以下是与CheckBox控件相关的重要属性。您可以查看Android官方文档以获取属性的完整列表以及可以在运行时更改这些属性的相关方法。 继承自 android.widget.T…

探索IPv6:未来互联的新时代

文章目录 一、IPv4的问题二、IPv6的优势三、地址格式与地址书写压缩四、网段划分五、地址分类六、IPv6邻居发现协议七、常用命令 首先可以看下思维导图&#xff0c;以便更好的理解接下来的内容。 一、IPv4的问题 地址资源枯竭&#xff1a; 由于IPv4地址长度有限&#xff0c;可用…

导致事物失效的场景有哪些 ?

目录 1. 导致事物失效的场景有哪些 &#xff1f; 1.1 为什么 Transaction 修饰非 public 方法会导致事物失效 &#xff1f; 1.2 代码中使用 try/catch 处理了异常为什么会导致事物失效 &#xff1f; 1.3 为什么在类内部调用 Transaction 修饰的方法会导致事务失效 ? 1.4 …

一图胜千言!数据可视化多维讲解(Python)

数据聚合、汇总和可视化是支撑数据分析领域的三大支柱。长久以来&#xff0c;数据可视化都是一个强有力的工具&#xff0c;被业界广泛使用&#xff0c;却受限于 2 维。在本文中&#xff0c;作者将探索一些有效的多维数据可视化策略&#xff08;范围从 1 维到 6 维&#xff09;。…

批处理启动程序

&#x1f495;批处理启动程序 新建一个txt&#xff0c;把后缀改成bat&#xff0c;编辑脚本&#xff1a;start exe路径即可&#xff1a;

$nextTick使用

在Vue中&#xff0c;$nextTick是一个实例方法&#xff0c;用于在DOM更新之后执行回调函数。它可以用于在更新视图后执行一些操作&#xff0c;例如访问更新后的DOM元素或执行其他异步任务。 以下是$nextTick的使用方法&#xff1a; this.$nextTick(() > {// 在DOM更新后执行…

【若依框架RuoYi-Vue-Plus 图片回显不显示问题,OSS文件上传或者本地上传】

一、问题 1.设计表 product&#xff08;商品表&#xff09; 有 id &#xff08;id&#xff09; name&#xff08;商品名&#xff09;icon&#xff08;图标&#xff09; 2.使用若依代码生成功能&#xff0c;导入product表&#xff0c;代码生成。 3.将生成的代码导入到项目中得到…

Vue-Router 一篇搞定 Vue3

前言 在 Web 前端开发中&#xff0c;路由是非常重要的一环&#xff0c;但是路由到底是什么呢&#xff1f; 从路由的用途上讲 路由是指随着浏览器地址栏的变化&#xff0c;展示给用户不同的页面。 从路由的实现原理上讲 路由是URL到函数的映射。它将 URL 和应用程序的不同部分…

PXE 装机(五十)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、PXE是什么 二、PXE的组件 三、配置vsftpd 四、配置tftp 五、准备pxelinx.0文件、引导文件、内核文件 ​六、配置dhcp 七、创建default文件 八、配置pxe无人值守…

C语言圣经KR笔记 1.10外部变量和作用域

1.10外部变量和作用域 上一节main中的变量&#xff0c;如line、longest等等&#xff0c;对main来说是私有的或者说是局部的。因为它们是在main中定义的&#xff0c;其他函数不能直接访问它们。其他函数中的变量也是如此&#xff0c;例如&#xff0c;getline中的变量 i 与copy中…

C语言:static关键字的使用

1.static修饰局部变量 这是static关键字使用最多的情况。我们知道局部变量是在程序运行阶段在栈上创建的&#xff0c;但是static修饰的局部变量是在程序编译阶段在代码段&#xff08;静态区&#xff09;创建的。所以在static修饰的变量所在函数执行结束后该变量依然存在。 //…

C++(17):标准库特殊设施

tuple 类型 tuple是类似pair的模板。 每个pair的成员类型都不相同&#xff0c;但每个 pair都恰好有两个成员。不同tuple类型的成员类型也不相同&#xff0c;但一个tuple可以有任意数量的成员。 每个确定的tuple类型的成员数目是固定的&#xff0c;但一个tuple类型的成员数目可…

OS 死锁处理

如果P先申请mutex 则mutex从1置零&#xff0c;假设申请到的empty 0则empty变成-1阻塞态 同理C中mutex从0变为-1&#xff0c;那么如果想离开阻塞态&#xff0c;那么就需要执行V&#xff08;empty&#xff09;但是如果执行V&#xff08;empty&#xff09;就需要P&#xff08;mu…

postgresql-窗口函数

postgresql-窗口函数 简介窗口函数的定义分区选项&#xff08;PARTITION BY&#xff09;排序选项&#xff08;ORDER BY&#xff09;窗口选项&#xff08;frame_clause&#xff09; 聚合窗口函数排名窗口函数演示了 CUME_DIST 和 NTILE 函数 取值窗口函数 简介 常见的聚合函数&…

飞致云开源社区月度动态报告(2023年8月)

自2023年6月起&#xff0c;中国领先的开源软件公司FIT2CLOUD飞致云以月度为单位发布《飞致云开源社区月度动态报告》&#xff0c;旨在向广大社区用户同步飞致云旗下系列开源软件的发展情况&#xff0c;以及当月主要的产品新版本发布、社区运营成果等相关信息。 飞致云开源大屏…

开讲啦!0基础也能玩转飞桨开源社区

作为cs/ai学生&#xff0c;你是否经历过这些至暗时刻&#xff1a; 希望快速入门深度学习&#xff0c;无奈网上到处都是看不懂“黑话”一遍遍计算综测小数点后四位&#xff0c;不断在保研边缘反复横跳看着“洁白如新”的履历叹气&#xff0c;一听到“考研复试”就头皮发麻“0实习…

【ES6】Promise.allSettled的用法

Promise.allSettled() 是一个Promise方法&#xff0c;用于处理一个Promise数组&#xff0c;返回一个新的Promise数组&#xff0c;每个元素对应原始Promise的状态。这个方法可以用于处理多个异步操作&#xff0c;并且能够获取每个操作的结果和状态。 下面是Promise.allSettled(…