基于YOLOV8模型和CCPD数据集的车牌目标检测系统(PyTorch+Pyside6+YOLOv8模型)

news2024/11/18 20:29:09

摘要:基于YOLOV8模型和CCPD数据集的车牌目标检测系统可用于日常生活中检测与定位车牌目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型和CCPD数据集的车牌目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的CCPD车牌数据集标注了车牌这一个类别,数据集总计313518张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的车牌检测数据集包含训练集248610张图片,验证集58446张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/956154.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day51|leetcode 309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费

leetcode 309.最佳买卖股票时机含冷冻期 题目链接:309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode) 视频链接:动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻…

对比通达信主副图指标,排序指标的显示方式

**1.新建指标的注意事项:**打开指标公式编辑器,公式名称是要必填的、指标源码里面有参数要带上参数,不然会指报错、画线方法(主图显示,还是幅图显示,以及是否要叠加k线,主图替换等等&#xff09…

七大基本判断问题,你都get到了吗

Hello,这里是mouche,当然你也可以叫我某车,反正大家都爱这么叫😁最近看到一些判断就想记下来,这一篇算附带自己的思考和整理的整理型的博客吧,接下去如果有想到新的也会在这一篇进行整理如果有错误的可以在评论区提醒我…

圆圈加数字的css

方式一 .circle { width: 50px; height: 50px; border-radius: 50%; background-color: #f00; color: #fff; text-align: center; line-height: 50px; } .circle::before { content: attr(data-number); display: block; } <div class"circle" data-number"…

Hibernate(Spring Data)抓取策略

文章目录 示例代码放到最后&#xff0c;使用的是Springboot 项目1. 简介2. Hibernate抓取策略分类2.1 即时加载&#xff08;Eager Loading&#xff09;2.2 延迟加载&#xff08;Lazy Loading&#xff09;2.3 子查询加载&#xff08;Subselect Loading&#xff09;2.4 基于批处理…

【100天精通python】Day48:python Web开发_WSGI接口与使用

目录 1 WSGI接口 1.1 CGI 简介 1.2 WSGI 简介 1.3 定义 WSGI 接口 1.3.1 应用程序&#xff08;Application&#xff09; 1.3.2 服务器&#xff08;Server&#xff09; 1.4 WSGI 接口的使用示例 1.5 WSGI接口的优势 1 WSGI接口 上一节实现了静态服务器&#xff0c;但是当…

Cell子刊:肠道菌菌株之间的“明争暗斗”

抗生素耐药性质粒可以在肠道中不同肠杆菌科之间传播。本期经典文献解读&#xff0c;为大家带来发表在Cell Host and Microbe上的研究成果&#xff0c;探索具有相似营养需求的肠杆菌科沙门氏菌群如何在同一肠道中共同繁殖及质粒转移。 期刊&#xff1a;Cell Host Microbe …

八、MySQL(DML)如何修改表中的数据?

1、修改表数据 &#xff08;1&#xff09;基础语法&#xff1a; update 表名 SET 字段名1数值1,字段名2数值2&#xff0c;…… [where 条件]; &#xff08;2&#xff09; 操作实例&#xff1a; 第一步&#xff1a; 先准备一张表 insert into things values (10086,18,0x12…

spark支持深度学习批量推理

背景 在数据量较大的业务场景中&#xff0c;spark在数据处理、传统机器学习训练、 深度学习相关业务&#xff0c;能取得较明显的效率提升。 本篇围绕spark大数据背景下的推理&#xff0c;介绍一些优雅的使用方式。 spark适用场景 大数据量自定义方法处理、类sql处理传统机器…

掌握Kubernetes API:释放容器编排的潜力

Kubernetes API使用 1、 API是什么&#xff1f; API&#xff08;Application Programming Interface&#xff0c;应用程序接口&#xff09;&#xff1a; 是一些预先定义的接口&#xff08;如函数、HTTP接口&#xff09;&#xff0c;或指软件系统不同组成部分衔接的约定。 用来…

分类算法系列③:模型选择与调优 (Facebook签到位置预测)

目录 模型选择与调优 1、介绍 模型选择&#xff08;Model Selection&#xff09;&#xff1a; 调优&#xff08;Hyperparameter Tuning&#xff09;&#xff1a; 本章重点 2、交叉验证 介绍 为什么需要交叉验证 数据处理 3、⭐超参数搜索-网格搜索(Grid Search) 介绍…

合宙Air724UG LuatOS-Air LVGL API控件--图表 (Chart)

图表 (Chart) 一幅图胜过一千个字&#xff0c;通过图表展示出的数据内容能让用户更快速有效的了解数据特征。 代码示例 – 创建图表 chart lvgl.chart_create(lvgl.scr_act(), nil) lvgl.obj_set_size(chart, 200, 150) lvgl.obj_align(chart, nil, lvgl.ALIGN_CENTER, 0, …

聊聊Http服务化改造实践

在微服务架构体系中远程RPC调用主要包括Dubbo与Http调用两个大类&#xff0c;由于Dubbo拥有服务注册中心&#xff0c;并且起服务的命名非常规范&#xff0c;使用包名.类名.方法名进行描述。 而http调用通常都是使用httpclient等相关类库&#xff0c;这些在使用上并没有问题&am…

常见问题。

警告&#xff1a;There are 2 audio listeners in the scene. Please ensure there is always exactly one audio listener in the scene. 解决&#xff1a;两个摄像机两个audio listeners组件&#xff0c;禁用一个就好了。 错误&#xff1a;Scene ‘xxxxx’ couldn’t be loa…

在 Amazon 搭建无代码可视化的数据分析和建模平台

现代企业常常会有利用数据分析和机器学习帮助解决业务痛点的需求。如制造业中&#xff0c;利用设备采集上来的数据做预测性维护&#xff0c;质量控制&#xff1b;在零售业中&#xff0c;利用客户端端采集的数据做渠道转化率分析&#xff0c;个性化推荐等。 亚马逊云科技开发者…

能直接运营的发接任务平台小程序搭建开发演示

有个项目估计做过互联网的小伙伴都听说过——发接任务平台。 基本每年都有发接任务平台关站&#xff0c;但又有新的平台出来&#xff0c;往复循环&#xff0c;无比热闹。这在互联网圈不常见&#xff0c;互联网项目很多都是风头过去了就结束了&#xff0c;但发接任务年年似乎都…

HTML 播放器效果

效果图 实现代码 <!DOCTYPE HTML> <html><head><title>爱看动漫社区 | 首页 </title><link href"css/bootstrap.css" relstylesheet typetext/css /><!-- jQuery --><script src"js/jquery-1.11.0.min.js"…

进程间通信-Binder

Binder Binder框架概述服务端Binder驱动客户端 设计服务端和客户端设计服务端客户端设计 Binder与ServiceServiceAIDL 保证包裹内参数顺序IMusicPlayerServiceProxyStub 系统服务中的Binder对象ServiceManger管理的服务理解Manger功能快捷键合理的创建标题&#xff0c;有助于目…

19 Linux之Python定制篇-apt软件管理和远程登录

19 Linux之Python定制篇-apt软件管理和远程登录 文章目录 19 Linux之Python定制篇-apt软件管理和远程登录19.1 apt软件管理19.1.1 apt介绍19.1.2 更新软件下载地址-阿里源19.1.3 使用apt完成安装和卸载vim 19.2 远程登录Ubuntu 学习视频来自于B站【小白入门 通俗易懂】2021韩顺…

两个pdf文件合并为一个怎么操作?分享pdf合并操作步骤

不管是初入职场的小白&#xff0c;还是久经职场的高手&#xff0c;都必须深入了解pdf&#xff0c;特别是关于pdf的各种操作&#xff0c;如编辑、合并、压缩等操作&#xff0c;其中合并是这么多操作里面必需懂的技能之一&#xff0c;但是很多人还是不知道两个pdf文件合并为一个怎…