背景
在数据量较大的业务场景中,spark在数据处理、传统机器学习训练、
深度学习相关业务,能取得较明显的效率提升。
本篇围绕spark大数据背景下的推理,介绍一些优雅的使用方式。
spark适用场景
- 大数据量自定义方法处理、类sql处理
- 传统机器学习方法(k-means、xgboost、lr…)
- 分布式深度学习推理
目前在10亿+数据量的推理场景中使用,需要用户自己实现批数据准备,基于RDD的方法完成模型推理输出。
业务使用中的问题:
- 模型文件重复导入加载
- 自定义批数据准备,脱离深度学习dataloader框架,操作略显麻烦,有性能和内存oom等问题。
实践
spark加速深度学习推理
spark加速深度学习推理,基本思路为:
- 开启不定量worker并行执行(cpu或gpu)推理任务
- 所有worker共享同一份模型参数
- 依赖spark pandas udf功能,方便并行处理 dataframe 数据
- 依赖深度学习框架,方便实现最优批数据划分
下面以pytorch resnet 为实践demo
加载&&广播模型参数
广播模型参数,不仅能减少模型重复加载带来的流量和io,而且能加速推理前模型加载的速度。
driver广播模型参数:
# Load ResNet50 on driver node and broadcast its state.
model_state = models.resnet50(pretrained=True).state_dict()
bc_model_state = sc.broadcast(model_state)
worker读取模型参数:
def get_model_for_eval():
"""Gets the broadcasted model."""
model = models.resnet50(pretrained=True)
model.load_state_dict(bc_model_state.value)
model.eval()
return model
实现基于dataframe的dataset
目前主流的深度学习框架,dataset的实现大多基于本地存储,在读取分布式存储的场景 需要用户自定义实现。
自定义实现有2个方法:
- 使用分布式存储的api接口读取文件内容
- dataset读取dataframe二进制文件内容
方法一迭代与使用的存储类型会保持同步,且每次使用前需要明确使用的分布式存储,虽然实现方法容易但是使用流程略显麻烦。
方法二不需要关心分布式存储类型,只要需要获取并解析spark dataframe列传入内容即可。
本文采用方法二实现dataset:
# 从二进制流中解析图片信息
def pil_loader(binary_file):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
image_io = io.BytesIO(binary_file)
img = Image.open(image_io)
return img.convert('RGB')
# Create a custom PyTorch dataset class.
class ImageDataset(Dataset):
def __init__(self, data, transform=None):
self.data = data
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image = pil_loader(self.data[index])
if self.transform is not None:
image = self.transform(image)
return image
实现批量推理的pandas udf
Pandas udf是基于RDD的一个低门槛高性能的实现方法,pandas udf能自定义处理逻辑,以列的方式操作datafrme内容。
这是社区目前推荐的自定义处理方式。
# Define the function for model inference.
# PyArrow >= 1.0.0 must be installed;
@pandas_udf(ArrayType(FloatType()))
def predict_batch_udf(binaray_data: pd.Series) -> pd.Series:
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
images = ImageDataset(binaray_data, transform=transform)
loader = torch.utils.data.DataLoader(images, batch_size=500, num_workers=8)
model = get_model_for_eval()
model.to(device)
all_predictions = []
with torch.no_grad():
for batch in loader:
predictions = list(model(batch.to(device)).cpu().numpy())
for prediction in predictions:
all_predictions.append(prediction)
return pd.Series(all_predictions)
# 调用pandas udf
predictions_df = df. \
select(col("filename"), predict_batch_udf(col("data")).alias("prediction"))
更多代码细节:
https://github.com/Crazybean-lwb/deeplearning-pyspark/blob/master/examples/pytorch-inference.py
模型仓加速推理
打通到模型仓mlflow功能:
- 模型存储和版本管理
- 便捷取用
- 适用spark datarame更高阶的pandas udf实现
# Create the PySpark UDF
import mlflow.pyfunc
pyfunc_udf = mlflow.pyfunc.spark_udf(spark, model_uri=model_uri)
# 调用pandas udf
df = spark_df.withColumn("prediction", pyfunc_udf(struct([...])))
参考信息:
- pytorch分布式批量推理
- tensorflow分布式批量推理
- 模型仓mlflow协助分布式批量推理