自然语言处理(六):词的相似性和类比任务

news2024/11/29 22:49:05

词的相似性和类比任务

在前面的章节中,我们在一个小的数据集上训练了一个word2vec模型,并使用它为一个输入词寻找语义相似的词。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,为了直观地演示大型语料库中预训练词向量的语义,让我们将预训练词向量应用到词的相似性和类比任务中。

文章内容来自李沐大神的《动手学深度学习》并加以我的理解,感兴趣可以去https://zh-v2.d2l.ai/查看完整书籍


文章目录

  • 词的相似性和类比任务
  • 加载预训练词向量
  • 应用预训练词向量
    • 词相似度
    • 词类比


加载预训练词向量

以下列出维度为50、100和300的预训练GloVe嵌入,可从GloVe网站下载。预训练的fastText嵌入有多种语言。这里我们使用可以从fastText网站下载300维度的英文版本(“wiki.en”)。

import os
import torch
from torch import nn
from d2l import torch as d2l
#@save
d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip',
                                '0b8703943ccdb6eb788e6f091b8946e82231bc4d')

#@save
d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip',
                                 'cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')

#@save
d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip',
                                  'b5116e234e9eb9076672cfeabf5469f3eec904fa')

#@save
d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip',
                           'c1816da3821ae9f43899be655002f6c723e91b88')

为了加载这些预训练的GloVe和fastText嵌入,我们定义了以下TokenEmbedding类。

#@save
class TokenEmbedding:
    """GloVe嵌入"""
    def __init__(self, embedding_name):
        self.idx_to_token, self.idx_to_vec = self._load_embedding(
            embedding_name)
        self.unknown_idx = 0
        self.token_to_idx = {token: idx for idx, token in
                             enumerate(self.idx_to_token)}

    def _load_embedding(self, embedding_name):
        idx_to_token, idx_to_vec = ['<unk>'], []
        data_dir = d2l.download_extract(embedding_name)
        # GloVe网站:https://nlp.stanford.edu/projects/glove/
        # fastText网站:https://fasttext.cc/
        with open(os.path.join(data_dir, 'vec.txt'), 'r') as f:
            for line in f:
                elems = line.rstrip().split(' ')
                token, elems = elems[0], [float(elem) for elem in elems[1:]]
                # 跳过标题信息,例如fastText中的首行
                if len(elems) > 1:
                    idx_to_token.append(token)
                    idx_to_vec.append(elems)
        idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
        return idx_to_token, torch.tensor(idx_to_vec)

    def __getitem__(self, tokens):
        indices = [self.token_to_idx.get(token, self.unknown_idx)
                   for token in tokens]
        vecs = self.idx_to_vec[torch.tensor(indices)]
        return vecs

    def __len__(self):
        return len(self.idx_to_token)

下面我们加载50维GloVe嵌入(在维基百科的子集上预训练)。创建TokenEmbedding实例时,如果尚未下载指定的嵌入文件,则必须下载该文件。

glove_6b50d = TokenEmbedding('glove.6b.50d')

输出词表大小。词表包含400000个词(词元)和一个特殊的未知词元。

len(glove_6b50d)

在这里插入图片描述

我们可以得到词表中一个单词的索引,反之亦然。

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]

在这里插入图片描述

应用预训练词向量

使用加载的GloVe向量,我们将通过下面的词相似性和类比任务中来展示词向量的语义。

词相似度

为了根据词向量之间的余弦相似性为输入词查找语义相似的词,我们实现了以下knn( k k k近邻)函数。

def knn(W, x, k):
    # 增加1e-9以获得数值稳定性
    cos = torch.mv(W, x.reshape(-1,)) / (
        torch.sqrt(torch.sum(W * W, axis=1) + 1e-9) *
        torch.sqrt((x * x).sum()))
    _, topk = torch.topk(cos, k=k)
    return topk, [cos[int(i)] for i in topk]

然后,我们使用TokenEmbedding的实例embed中预训练好的词向量来搜索相似的词。

def get_similar_tokens(query_token, k, embed):
    topk, cos = knn(embed.idx_to_vec, embed[[query_token]], k + 1)
    for i, c in zip(topk[1:], cos[1:]):  # 排除输入词
        print(f'{embed.idx_to_token[int(i)]}:cosine相似度={float(c):.3f}')

glove_6b50d中预训练词向量的词表包含400000个词和一个特殊的未知词元。排除输入词和未知词元后,我们在词表中找到与“chip”一词语义最相似的三个词。

get_similar_tokens('chip', 3, glove_6b50d)

在这里插入图片描述
下面输出与“baby”和“beautiful”相似的词。

get_similar_tokens('baby', 3, glove_6b50d)

在这里插入图片描述

get_similar_tokens('beautiful', 3, glove_6b50d)

在这里插入图片描述

词类比

除了找到相似的词,我们还可以将词向量应用到词类比任务中。 例如,“man” : “woman” :: “son” : “daughter”是一个词的类比。 “man”是对“woman”的类比,“son”是对“daughter”的类比。 具体来说,词类比任务可以定义为: 对于单词类比 a : b : c : d a:b:c:d a:b:c:d,给出前三个词 a a a b b b c c c,找到 d d d。 用 v e c ( w ) vec(w) vec(w)表示词 w w w的向量, 为了完成这个类比,我们将找到一个词, 其向量与 v e c ( c ) + v e c ( b ) − v e c ( a ) vec(c)+vec(b)-vec(a) vec(c)+vec(b)vec(a)的结果最相似。

def get_analogy(token_a, token_b, token_c, embed):
    vecs = embed[[token_a, token_b, token_c]]
    x = vecs[1] - vecs[0] + vecs[2]
    topk, cos = knn(embed.idx_to_vec, x, 1)
    return embed.idx_to_token[int(topk[0])]  # 删除未知词

让我们使用加载的词向量来验证“male-female”类比。

get_analogy('man', 'woman', 'son', glove_6b50d)

在这里插入图片描述
下面完成一个“首都-国家”的类比: “beijing” : “china” :: “tokyo” : “japan”。 这说明了预训练词向量中的语义。

get_analogy('beijing', 'china', 'tokyo', glove_6b50d)

在这里插入图片描述
另外,对于“bad” : “worst” :: “big” : “biggest”等“形容词-形容词最高级”的比喻,预训练词向量可以捕捉到句法信息。

get_analogy('bad', 'worst', 'big', glove_6b50d)

在这里插入图片描述
为了演示在预训练词向量中捕捉到的过去式概念,我们可以使用“现在式-过去式”的类比来测试句法:“do” : “did” :: “go” : “went”。

get_analogy('do', 'did', 'go', glove_6b50d)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/951596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言:递归思想及实例详解

简介&#xff1a;在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。通过函数的自调用化繁为简。 递归可以说是编程中最神奇的一种算法。因为我们有时候可能不能完全明晰代码的运行过程&#xff0c;但是我们却知道代码可以跑出正确的结果。而当我们使…

docker打包vue vite前端项目

打包vue vite 前端项目 1.打包时将测试删除 2.修改配置 3.打包项目 npm run build 显示成功&#xff08;黄的也不知道是啥&#xff09; 打包好的前端文件放入 4.配置 default.conf upstream wms-app {server 你自己的ip加端口 ;server 192.168.xx.xx:8080 ; } server { …

Vulnhub: Ragnar Lothbrok: 1靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.226 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.226 作者提示修改hosts文件 目录爆破 gobuster dir -u http://armbjorn -w /usr/share/wordlists/dirbuster/directory-l…

自动驾驶攻城战,华为小鹏先亮剑

点击关注 文&#xff5c;刘俊宏 编&#xff5c;苏扬、王一粟 本文为光锥智能x腾讯科技联合出品 2023年过半&#xff0c;城市NOA&#xff08;城市领航辅助驾驶&#xff09;的元年如预期中到来了吗&#xff1f; 8月25日&#xff0c;成都车展开幕&#xff0c;与4个月之前的上海…

尚硅谷SpringMVC

五、域对象共享数据 1、使用ServletAPI向request域对象共享数据 首页&#xff1a; Controller public class TestController {RequestMapping("/")public String index(){return "index";} } <!DOCTYPE html> <html lang"en" xmln…

Javascript 中的 debugger 拦截

debugger 指令&#xff0c;一般用于调试&#xff0c;在如浏览器调试执行环境中&#xff0c;可以在 JavaScript 代码中产生中断。 如果想要拦截 debugger&#xff0c;是不容易的&#xff0c;常用的函数替代、proxy 方法均对它无效&#xff0c;如&#xff1a; window.debugger …

chrono学习(一)

我想用chrono进行沙土的仿真&#xff0c;首先学习demo_GPU_ballCosim.cpp&#xff0c;这个例子仿真了一些沙土的沉降过程。 首先&#xff0c;运行编辑完成的文件demo_GPU_ballCosim&#xff1a; (base) eowyneowyn-MS-7D20:~/build_chrono/bin$ ./demo_GPU_ballCosim 运行完得…

Laravel 表单验证器的常用的2种使用方法

1、使用控制器的 validate 方法进行参数验证 场景一&#xff1a;前后端未分离 /*** 保存一篇新的博客文章。** param Request $request* return Response*/ public function store(Request $request) {$this->validate($request, [title > required|unique:posts|max:2…

plumelog介绍与应用-一个简单易用的java分布式日志系统

官方文档&#xff1a;http://www.plumelog.com/zh-cn/docs/FASTSTART.html 简介 无代码入侵的分布式日志系统&#xff0c;基于log4j、log4j2、logback搜集日志&#xff0c;设置链路ID&#xff0c;方便查询关联日志基于elasticsearch作为查询引擎高吞吐&#xff0c;查询效率高全…

YOLOv5 如何计算并打印 FPS

文章用于学习记录 YOLO v5 FPS计算方法修改对应自己数据集的 yaml 文件以及训练好的 pt 文件以及batch-size1, FPS 1000ms/(0.311.91.0)pre-process&#xff1a;图像预处理时间&#xff0c;包括图像保持长宽比缩放和padding填充&#xff0c;通道变换&#xff08;HWC->CHW&a…

vr健康管理服务情景化教学弥补现代医学教学中的诸多不足之处

高职高专临床医学院校以培养岗位胜任力为目的&#xff0c;该专业是一门专业性、实践性较强的医学学科&#xff0c;要求培养出来的学生具有较强的临床实践能力&#xff0c;医学生所学的全部知识&#xff0c;都应与实践相结合&#xff0c;解决临床的实际问题&#xff0c;为患者解…

sql server 备份到网络共享

场景&#xff1a;sql server服务器A将数据库备份文件备份到服务器B 1&#xff09;服务器B创建共享目录 这里我将 D:\ProDbBak 共享&#xff0c;并且Everyone完全控制 2&#xff09;sql server服务器A能够访问服务器B共享目录&#xff0c;并且能完全控制 3&#xff09;修改服务…

GPT-3在化学中进行低数据发现是否足够?

今天介绍一份洛桑联邦理工学院进行的工作&#xff0c;这份工作被发表在化学期刊预印本网站上。 对于这份工作&#xff0c;有兴趣的朋友可以通过我们的国内ChatGPT镜像站进行测试使用&#xff0c;我们的站点并没有针对特定任务进行建设&#xff0c;是通用性质的。 化学领域进行…

QTday1(实现图形化界面、QT工程项目各文件初始程序的介绍)

1.实现图形化界面 #include "widget.h" #include "ui_widget.h" #include <QDebug> //输出函数对应的头文件 #include <QIcon>Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(…

Ansible学习笔记11

Command和Shell模块&#xff1a; 两个模块都是用于执行Linux命令的&#xff0c;这个对于命令熟悉的工程师来说&#xff0c;用起来非常high。 Shell模块跟Command模块差不多&#xff08;Command模块不能执行一类$HOME、> 、<、| 等符号&#xff0c;但是Shell是可以的。&…

MySQL函数和约束

MySQL常见函数 字符串常见函数 # concat : 字符串拼接 select concat(Hello , MySQL); # lower : 全部转小写 SELECT LOWER(Hello); # upper : 全部转大写 SELECT UPPER(hello); # lpad : 左填充 SELECT LPAD(hello,10,0); # rpad : 右填充 SELECT RPAD(hello,10,0); # trim…

K8S容器OOM killed排查

背景 数据服务平台南海容器k8s设置的内存上限2GB&#xff0c;多次容器被OOM killed。 启动命令 java -XX:MaxRAMPercentage70.0 -XX:HeapDumpOnOutOfMemoryError -XX:HeapDumpPath/apps/logs/ ***.jar排查过程 1 当收到实例内存超过95%告警时&#xff0c;把jvm进程堆dump下…

kotlin 转 Java

今天突然想研究下有些kotlin文件转为Java到底长什么样&#xff0c;好方便优化kotlin代码&#xff0c;搞了半天发现一个非常简单的Android Studio或者Intellij idea官方插件Kotlin&#xff0c;Kotlin是插件的名字&#xff0c;真是醉了&#xff1b; 这里以AS为例&#xff0c;使用…

git在windows上安装

介绍git工具在windows上如何安装 git官网下载地址 1.1、下载 https://github.com/git-for-windows/git/releases/download/v2.36.0.windows.1/Git-2.36.0-64-bit.exe自行选择版本&#xff0c;这里我选择的是 Git-2.36.0-64-bit这个版本 1.2、安装 安装路径选择英文且不带空格…

九、适配器模式

一、什么是适配器模式 适配器模式&#xff08;Adapter&#xff09;的定义如下&#xff1a;将一个类的接口转换成客户希望的另外一个接口&#xff0c;使得原本由于接口不兼容而不能一起工作的那些类能一起工作。 适配器模式&#xff08;Adapter&#xff09;包含以下主要角色&…