一、五种IO模型------读写外设数据的方式
-
阻塞: 不能操作就睡觉
-
非阻塞:不能操作就返回错误
-
多路复用:委托中介监控
-
信号驱动:让内核如果能操作时发信号,在信号处理函数中操作
-
异步IO:向内核注册操作请求,内核完成操作后发通知信号
二、阻塞与非阻塞
应用层:
open时由O_NONBLOCK指示read、write时是否阻塞
open以后可以由fcntl函数来改变是否阻塞:
flags = fcntl(fd,F_GETFL,0);
flags |= O_NONBLOCK;
fcntl(fd, F_SETFL, flags);
驱动层:通过等待队列
wait_queue_head_t //等待队列头数据类型
init_waitqueue_head(wait_queue_head_t *pwq) //初始化等待队列头
wait_event_interruptible(wq,condition)
/*
功能:条件不成立则让任务进入浅度睡眠,直到条件成立醒来
wq:等待队列头
condition:C语言表达式
返回:正常唤醒返回0,信号唤醒返回非0(此时读写操作函数应返回-ERESTARTSYS)
*/
wait_event(wq,condition) //深度睡眠
wake_up_interruptible(wait_queue_head_t *pwq)
wake_up(wait_queue_head_t *pwq)
/*
1. 读、写用不同的等待队列头rq、wq
2. 无数据可读、可写时调用wait_event_interruptible(rq、wq,条件)
3. 写入数据成功时唤醒rq,读出数据成功唤醒wq
*/
示例:
mychar.h
#ifndef MY_CHAR_H
#define MY_CHAR_H
#include <asm/ioctl.h>
#define MY_CHAR_MAGIC 'c'
#define MYCHAR_IOCTL_GET_MAXLEN _IOR(MY_CHAR_MAGIC, 1, int *)
#define MYCHAR_IOCTL_GET_CURLEN _IOR(MY_CHAR_MAGIC, 2, int *)
#endif
mychar.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
#include <asm/ioctl.h>
#include "mychar.h"
#define BUF_LEN 100
int major = 11; //主设备号
int minor = 0; //次设备号
int char_num = 1; //设备号数量
struct mychar_dev
{
struct cdev mydev;
char mydev_buf[BUF_LEN];
int curlen;
wait_queue_head_t rq;
wait_queue_head_t wq;
};
struct mychar_dev gmydev;
int mychar_open (struct inode *pnode, struct file *pfile)//打开设备
{
pfile->private_data = (void *) (container_of(pnode->i_cdev, struct mychar_dev, mydev));
printk("open\n");
return 0;
}
int mychar_close(struct inode *pnode, struct file *pfile)//关闭设备
{
printk("close\n");
return 0;
}
ssize_t mychar_read (struct file *pfile, char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
/* 判断是否有数据可读 */
if(pmydev->curlen <= 0) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Not Data Read\n");
return -1;
} else { //阻塞
/* 睡眠 当curlen>0 时返回 */
ret = wait_event_interruptible(pmydev->rq, pmydev->curlen > 0);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要读取的数据长度,如果请求大于设备当前数据长度,则读取全部可用数据
if (count > pmydev->curlen) {
size = pmydev->curlen;
}
else {
size = count;
}
// 将设备数据复制到用户空间缓冲区
ret = copy_to_user(puser, pmydev->mydev_buf, size);
if(ret) {
printk("copy_to_user failed\n");
return -1;
}
// 移动设备内部缓冲区,去除已读取的数据
memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);
pmydev->curlen -= size;
wake_up_interruptible(&pmydev->wq);
// 返回实际读取的字节数
return size;
}
ssize_t mychar_write (struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
if(pmydev->curlen >= BUF_LEN) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Can Not Write Data\n");
return -1;
} else { //阻塞
ret = wait_event_interruptible(pmydev->wq, pmydev->curlen < BUF_LEN);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要写入的数据长度,如果请求大于设备缓冲区剩余空间,则写入剩余空间大小
if (count > BUF_LEN - pmydev->curlen) {
size = BUF_LEN - pmydev->curlen;
}
else {
size = count;
}
// 从用户空间复制数据到设备缓冲区
ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
// 更新设备缓冲区中的数据长度
pmydev->curlen += size;
/* 唤醒读阻塞 */
wake_up_interruptible(&pmydev->rq);
// 返回实际写入的字节数
return size;
}
long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int __user *pret = (int *)arg;
int maxlen = BUF_LEN;
int ret = 0;
switch(cmd) {
case MYCHAR_IOCTL_GET_MAXLEN:
ret = copy_to_user(pret, &maxlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
case MYCHAR_IOCTL_GET_CURLEN:
ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
default:
printk("The is a know\n");
return -1;
}
return 0;
}
struct file_operations myops = {
.owner = THIS_MODULE,
.open = mychar_open,
.read = mychar_read,
.write = mychar_write,
.unlocked_ioctl = mychar_ioctl,
};
int __init mychar_init(void)
{
int ret = 0;
dev_t devno = MKDEV(major, minor);
/* 手动申请设备号 */
ret = register_chrdev_region(devno, char_num, "mychar");
if (ret) {
/* 动态申请设备号 */
ret = alloc_chrdev_region(&devno, minor, char_num, "mychar");
if(ret){
printk("get devno failed\n");
return -1;
}
/*申请成功 更新设备号*/
major = MAJOR(devno);
}
/* 给struct cdev对象指定操作函数集 */
cdev_init(&gmydev.mydev, &myops);
/* 将struct cdev对象添加到内核对应的数据结构中 */
gmydev.mydev.owner = THIS_MODULE;
cdev_add(&gmydev.mydev, devno, char_num);
/* 初始化 */
init_waitqueue_head(&gmydev.rq);
init_waitqueue_head(&gmydev.wq);
return 0;
}
void __exit mychar_exit(void)
{
dev_t devno = MKDEV(major, minor);
printk("exit %d\n", devno);
/* 从内核中移除一个字符设备 */
cdev_del(&gmydev.mydev);
/* 回收设备号 */
unregister_chrdev_region(devno, char_num);
}
MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);
testmychar_blockwait.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ioctl.h>
#include "mychar.h"
int main(int argc, char *argv[])
{
int fd = -1;
char buf[100];
if(argc < 2) {
printf("The argument is too few\n");
return -1;
}
fd = open(argv[1], O_RDWR);
if(fd < 0) {
perror("open");
return -1;
}
memset(buf, 'C', sizeof(buf));
if ( (write(fd, buf, strlen(buf)) ) < 0 ) {
printf("write failed\n");
return -1;
}
close(fd);
fd = -1;
return 0;
}
testmychar_blockread.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ioctl.h>
#include "mychar.h"
int main(int argc, char *argv[])
{
int fd = -1;
char buf[32] = "";
int ret = 0;
if(argc < 2) {
printf("The argument is too few\n");
return -1;
}
fd = open(argv[1], O_RDWR);
if(fd < 0) {
perror("open");
return -1;
}
if ( (read(fd, buf, sizeof(buf)) ) < 0 ) {
printf("read failed\n");
return -1;
} else {
printf("buf = %s\n", buf);
}
close(fd);
fd = -1;
return 0;
}
运行结果: