从零开始学习 Java:简单易懂的入门指南之查找算法及排序算法(二十)

news2024/11/16 5:39:57

查找算法及排序算法

  • 常见的七种查找算法:
    • 1. 基本查找
    • 2. 二分查找
    • 3. 插值查找
    • 4. 斐波那契查找
    • 5. 分块查找
    • 6. 哈希查找
    • 7. 树表查找
  • 四种排序算法:
    • 1. 冒泡排序
      • 1.1 算法步骤
      • 1.2 动图演示
      • 1.3 代码示例
    • 2. 选择排序
      • 2.1 算法步骤
      • 2.2 动图演示
    • 3. 插入排序
      • 3.1 算法步骤
      • 3.2 动图演示
    • 4. 快速排序
      • 4.1 算法步骤
      • 4.2 动图演示

常见的七种查找算法:

1. 基本查找

​ 也叫做顺序查找

​ 说明:顺序查找适合于存储结构为数组或者链表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。

示例代码:

public class A01_BasicSearchDemo1 {
    public static void main(String[] args) {
        //基本查找/顺序查找
        //核心:
        //从0索引开始挨个往后查找

        //需求:定义一个方法利用基本查找,查询某个元素是否存在
        //数据如下:{131, 127, 147, 81, 103, 23, 7, 79}


        int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
        int number = 82;
        System.out.println(basicSearch(arr, number));

    }

    //参数:
    //一:数组
    //二:要查找的元素

    //返回值:
    //元素是否存在
    public static boolean basicSearch(int[] arr, int number){
        //利用基本查找来查找number在数组中是否存在
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] == number){
                return true;
            }
        }
        return false;
    }
}

2. 二分查找

​ 也叫做折半查找

说明:元素必须是有序的,从小到大,或者从大到小都是可以的。

如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。

基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:

  • 相等

    说明找到了

  • 要查找的数据比中间节点小

    说明要查找的数字在中间节点左边

  • 要查找的数据比中间节点大

    说明要查找的数字在中间节点右边

代码示例:

package com.itheima.search;

public class A02_BinarySearchDemo1 {
    public static void main(String[] args) {
        //二分查找/折半查找
        //核心:
        //每次排除一半的查找范围

        //需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
        //数据如下:{7, 23, 79, 81, 103, 127, 131, 147}

        int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
        System.out.println(binarySearch(arr, 150));
    }

    public static int binarySearch(int[] arr, int number){
        //1.定义两个变量记录要查找的范围
        int min = 0;
        int max = arr.length - 1;

        //2.利用循环不断的去找要查找的数据
        while(true){
            if(min > max){
                return -1;
            }
            //3.找到min和max的中间位置
            int mid = (min + max) / 2;
            //4.拿着mid指向的元素跟要查找的元素进行比较
            if(arr[mid] > number){
                //4.1 number在mid的左边
                //min不变,max = mid - 1;
                max = mid - 1;
            }else if(arr[mid] < number){
                //4.2 number在mid的右边
                //max不变,min = mid + 1;
                min = mid + 1;
            }else{
                //4.3 number跟mid指向的元素一样
                //找到了
                return mid;
            }

        }
    }
}

3. 插值查找

在介绍插值查找之前,先考虑一个问题:

​ 为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?

其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?

二分查找中查找点计算如下:

mid=(low+high)/2, 即mid=low+1/2*(high-low);

我们可以将查找的点改进为如下:

mid=low+(key-a[low])/(a[high]-a[low])*(high-low)
  这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

代码跟二分查找类似,只要修改一下mid的计算方式即可。

4. 斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….

(从第三个数开始,后边每一个数都是前两个数的和)。

然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

img

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可

代码示例:

public class FeiBoSearchDemo {
    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 8, 10, 89, 1000, 1234};
        System.out.println(search(arr, 1234));
    }

    public static int[] getFeiBo() {
        int[] arr = new int[maxSize];
        arr[0] = 1;
        arr[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            arr[i] = arr[i - 1] + arr[i - 2];
        }
        return arr;
    }

    public static int search(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        //表示斐波那契数分割数的下标值
        int index = 0;
        int mid = 0;
        //调用斐波那契数列
        int[] f = getFeiBo();
        //获取斐波那契分割数值的下标
        while (high > (f[index] - 1)) {
            index++;
        }
        //因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
        int[] temp = Arrays.copyOf(arr, f[index]);
        //实际需要使用arr数组的最后一个数来填充不足的部分
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = arr[high];
        }
        //使用while循环处理,找到key值
        while (low <= high) {
            mid = low + f[index - 1] - 1;
            if (key < temp[mid]) {//向数组的前面部分进行查找
                high = mid - 1;
                /*
                  对k--进行理解
                  1.全部元素=前面的元素+后面的元素
                  2.f[k]=k[k-1]+f[k-2]
                  因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
                  即在f[k-1]的前面继续查找k--
                  即下次循环,mid=f[k-1-1]-1
                 */
                index--;
            } else if (key > temp[mid]) {//向数组的后面的部分进行查找
                low = mid + 1;
                index -= 2;
            } else {//找到了
                //需要确定返回的是哪个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}

5. 分块查找

当数据表中的数据元素很多时,可以采用分块查找。

汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找

分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找

分块查找的过程:

  1. 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
  2. 给每一块创建对象单独存储到数组当中
  3. 查找数据的时候,先在数组查,当前数据属于哪一块
  4. 再到这一块中顺序查找

代码示例:

package com.itheima.search;

public class A03_BlockSearchDemo {
    public static void main(String[] args) {
        /*
            分块查找
            核心思想:
                块内无序,块间有序
            实现步骤:
                1.创建数组blockArr存放每一个块对象的信息
                2.先查找blockArr确定要查找的数据属于哪一块
                3.再单独遍历这一块数据即可
        */
        int[] arr = {16, 5, 9, 12,21, 18,
                     32, 23, 37, 26, 45, 34,
                     50, 48, 61, 52, 73, 66};

        //创建三个块的对象
        Block b1 = new Block(21,0,5);
        Block b2 = new Block(45,6,11);
        Block b3 = new Block(73,12,17);

        //定义数组用来管理三个块的对象(索引表)
        Block[] blockArr = {b1,b2,b3};

        //定义一个变量用来记录要查找的元素
        int number = 37;

        //调用方法,传递索引表,数组,要查找的元素
        int index = getIndex(blockArr,arr,number);

        //打印一下
        System.out.println(index);



    }

    //利用分块查找的原理,查询number的索引
    private static int getIndex(Block[] blockArr, int[] arr, int number) {
        //1.确定number是在那一块当中
        int indexBlock = findIndexBlock(blockArr, number);

        if(indexBlock == -1){
            //表示number不在数组当中
            return -1;
        }

        //2.获取这一块的起始索引和结束索引   --- 30
        // Block b1 = new Block(21,0,5);   ----  0
        // Block b2 = new Block(45,6,11);  ----  1
        // Block b3 = new Block(73,12,17); ----  2
        int startIndex = blockArr[indexBlock].getStartIndex();
        int endIndex = blockArr[indexBlock].getEndIndex();

        //3.遍历
        for (int i = startIndex; i <= endIndex; i++) {
            if(arr[i] == number){
                return i;
            }
        }
        return -1;
    }


    //定义一个方法,用来确定number在哪一块当中
    public static int findIndexBlock(Block[] blockArr,int number){ //100


        //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
        for (int i = 0; i < blockArr.length; i++) {
            if(number <= blockArr[i].getMax()){
                return i;
            }
        }
        return -1;
    }



}

class Block{
    private int max;//最大值
    private int startIndex;//起始索引
    private int endIndex;//结束索引


    public Block() {
    }

    public Block(int max, int startIndex, int endIndex) {
        this.max = max;
        this.startIndex = startIndex;
        this.endIndex = endIndex;
    }

    /**
     * 获取
     * @return max
     */
    public int getMax() {
        return max;
    }

    /**
     * 设置
     * @param max
     */
    public void setMax(int max) {
        this.max = max;
    }

    /**
     * 获取
     * @return startIndex
     */
    public int getStartIndex() {
        return startIndex;
    }

    /**
     * 设置
     * @param startIndex
     */
    public void setStartIndex(int startIndex) {
        this.startIndex = startIndex;
    }

    /**
     * 获取
     * @return endIndex
     */
    public int getEndIndex() {
        return endIndex;
    }

    /**
     * 设置
     * @param endIndex
     */
    public void setEndIndex(int endIndex) {
        this.endIndex = endIndex;
    }

    public String toString() {
        return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";
    }
}

6. 哈希查找

哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。

一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体

在课程中,为了让大家方便理解,所以规定:

  • 数组的0索引处存储1~100
  • 数组的1索引处存储101~200
  • 数组的2索引处存储201~300
  • 以此类推

但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。

更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。
%8C%/img21-36-50.png)]

7. 树表查找

本知识点涉及到数据结构:树。

基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:

1)若任意节点左子树上所有的数据,均小于本身;

2)若任意节点右子树上所有的数据,均大于本身;

二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。

​ 不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高

四种排序算法:

1. 冒泡排序

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。

这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。

当然,大家可以按照从大到小的方式进行排列。

1.1 算法步骤

  1. 相邻的元素两两比较,大的放右边,小的放左边
  2. 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
  3. 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以

1.2 动图演示

在这里插入图片描述

1.3 代码示例

public class A01_BubbleDemo {
    public static void main(String[] args) {
        /*
            冒泡排序:
            核心思想:
            1,相邻的元素两两比较,大的放右边,小的放左边。
            2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。
            3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。
        */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};

        //2.利用冒泡排序将数组中的数据变成 1 2 3 4 5

        //外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮
        for (int i = 0; i < arr.length - 1; i++) {
            //内循环:每一轮中我如何比较数据并找到当前的最大值
            //-1:为了防止索引越界
            //-i:提高效率,每一轮执行的次数应该比上一轮少一次。
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //i 依次表示数组中的每一个索引:0 1 2 3 4
                if(arr[j] > arr[j + 1]){
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }

        printArr(arr);




    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
}

2. 选择排序

2.1 算法步骤

  1. 从0索引开始,跟后面的元素一一比较
  2. 小的放前面,大的放后面
  3. 第一次循环结束后,最小的数据已经确定
  4. 第二次循环从1索引开始以此类推
  5. 第三轮循环从2索引开始以此类推
  6. 第四轮循环从3索引开始以此类推。

2.2 动图演示

在这里插入图片描述

public class A02_SelectionDemo {
    public static void main(String[] args) {

        /*
            选择排序:
                1,从0索引开始,跟后面的元素一一比较。
                2,小的放前面,大的放后面。
                3,第一次循环结束后,最小的数据已经确定。
                4,第二次循环从1索引开始以此类推。

         */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};


        //2.利用选择排序让数组变成 1 2 3 4 5
       /* //第一轮:
        //从0索引开始,跟后面的元素一一比较。
        for (int i = 0 + 1; i < arr.length; i++) {
            //拿着0索引跟后面的数据进行比较
            if(arr[0] > arr[i]){
                int temp = arr[0];
                arr[0] = arr[i];
                arr[i] = temp;
            }
        }*/

        //最终代码:
        //外循环:几轮
        //i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换
        for (int i = 0; i < arr.length -1; i++) {
            //内循环:每一轮我要干什么事情?
            //拿着i跟i后面的数据进行比较交换
            for (int j = i + 1; j < arr.length; j++) {
                if(arr[i] > arr[j]){
                    int temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }


        printArr(arr);


    }
    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

3. 插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。

插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找

3.1 算法步骤

将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。

遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。

N的范围:0~最大索引

3.2 动图演示

在这里插入图片描述

package com.itheima.mysort;


public class A03_InsertDemo {
    public static void main(String[] args) {
        /*
            插入排序:
                将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
                遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
                N的范围:0~最大索引

        */
        int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};

        //1.找到无序的哪一组数组是从哪个索引开始的。  2
        int startIndex = -1;
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] > arr[i + 1]){
                startIndex = i + 1;
                break;
            }
        }

        //2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素
        for (int i = startIndex; i < arr.length; i++) {
            //问题:如何把遍历到的数据,插入到前面有序的这一组当中

            //记录当前要插入数据的索引
            int j = i;

            while(j > 0 && arr[j] < arr[j - 1]){
                //交换位置
                int temp = arr[j];
                arr[j] = arr[j - 1];
                arr[j - 1] = temp;
                j--;
            }

        }
        printArr(arr);
    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

4. 快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。

快速排序又是一种分而治之思想在排序算法上的典型应用。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!

它是处理大数据最快的排序算法之一了。

4.1 算法步骤

  1. 从数列中挑出一个元素,一般都是左边第一个数字,称为 “基准数”;
  2. 创建两个指针,一个从前往后走,一个从后往前走。
  3. 先执行后面的指针,找出第一个比基准数小的数字
  4. 再执行前面的指针,找出第一个比基准数大的数字
  5. 交换两个指针指向的数字
  6. 直到两个指针相遇
  7. 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
  8. 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
  9. 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序

4.2 动图演示

在这里插入图片描述

package com.itheima.mysort;

import java.util.Arrays;

public class A05_QuickSortDemo {
   public static void main(String[] args) {
       System.out.println(Integer.MAX_VALUE);
       System.out.println(Integer.MIN_VALUE);
     /*
       快速排序:
           第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。
           比基准数小的全部在左边,比基准数大的全部在右边。
           后面以此类推。
     */

       int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};


       //int[] arr = new int[1000000];

      /* Random r = new Random();
       for (int i = 0; i < arr.length; i++) {
           arr[i] = r.nextInt();
       }*/


       long start = System.currentTimeMillis();
       quickSort(arr, 0, arr.length - 1);
       long end = System.currentTimeMillis();

       System.out.println(end - start);//149

       System.out.println(Arrays.toString(arr));
       //课堂练习:
       //我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率
       //得到一个结论:快速排序真的非常快。

      /* for (int i = 0; i < arr.length; i++) {
           System.out.print(arr[i] + " ");
       }*/

   }


   /*
    *   参数一:我们要排序的数组
    *   参数二:要排序数组的起始索引
    *   参数三:要排序数组的结束索引
    * */
   public static void quickSort(int[] arr, int i, int j) {
       //定义两个变量记录要查找的范围
       int start = i;
       int end = j;

       if(start > end){
           //递归的出口
           return;
       }



       //记录基准数
       int baseNumber = arr[i];
       //利用循环找到要交换的数字
       while(start != end){
           //利用end,从后往前开始找,找比基准数小的数字
           //int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};
           while(true){
               if(end <= start || arr[end] < baseNumber){
                   break;
               }
               end--;
           }
           System.out.println(end);
           //利用start,从前往后找,找比基准数大的数字
           while(true){
               if(end <= start || arr[start] > baseNumber){
                   break;
               }
               start++;
           }



           //把end和start指向的元素进行交换
           int temp = arr[start];
           arr[start] = arr[end];
           arr[end] = temp;
       }

       //当start和end指向了同一个元素的时候,那么上面的循环就会结束
       //表示已经找到了基准数在数组中应存入的位置
       //基准数归位
       //就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
       int temp = arr[i];
       arr[i] = arr[start];
       arr[start] = temp;

       //确定6左边的范围,重复刚刚所做的事情
       quickSort(arr,i,start - 1);
       //确定6右边的范围,重复刚刚所做的事情
       quickSort(arr,start + 1,j);

   }
}

后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/947687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于ETLCloud的自定义规则调用第三方jar包实现繁体中文转为简体中文

背景 前面曾体验过通过零代码、可视化、拖拉拽的方式快速完成了从 MySQL 到 ClickHouse 的数据迁移&#xff0c;但是在实际生产环境&#xff0c;我们在迁移到目标库之前还需要做一些过滤和转换工作&#xff1b;比如&#xff0c;在诗词数据迁移后&#xff0c;发现原来 MySQL 中…

部署问题集合(二十二)Linux设置定时任务,并设置系统时间

前言 因为项目中经常用到定时任务&#xff0c;特此总结记录一下 步骤 大部分虚拟机创建后就自带定时服务&#xff0c;直接用命令就好编辑定时任务&#xff1a;crontab -e&#xff0c;在该文件下添加如下内容开机自启&#xff1a;reboot /home/autoRun.sh定时执行&#xff1a…

基于java+springboot+vue的交流互动系统-lw

​ 系统介绍&#xff1a; 随着现在网络的快速发展&#xff0c;网上管理系统也逐渐快速发展起来&#xff0c;网上管理模式很快融入到了许多企业的之中&#xff0c;随之就产生了“交流互动系统”&#xff0c;这样就让交流互动系统更加方便简单。 对于本交流互动系统的设计来说&a…

字节一面:你能讲一下跨域吗

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;作为一名前端开发工程师&#xff0c;我们日常开发中与后端联调时一定会遇到跨域的问题&#xff0c;只有处理好了跨域才能够与后端交互完成需求&#xff0c;所以深入学习跨域…

STM32F103驱动oled显示屏

STM32F103驱动oled显示屏 一.了解oled显示屏二.IIC协议驱动oled显示屏2.1 oled.c2.2 oled.h 三.效果展示 一.了解oled显示屏 oled显示屏和其他显示屏类似&#xff0c;不过他只有0.96英寸&#xff0c;屏幕较小&#xff0c;但是使用起来比较方便。有二种驱动方式&#xff0c;分别…

Python学习笔记——从面试题出发学习Python

Python学习笔记——从面试题出发学习Python Python学习笔记——从面试题出发学习Python1. 可变数据类型与不可变数据类型&#xff0c;深拷贝与浅拷贝&#xff0c;函数参数的传递机制1.1 变量与对象1.2 可变数据类型与不可变数据类型1.3 深拷贝与浅拷贝1.4 函数参数的传递机制1.…

SIP对讲求助终端,带功放输出

SV-7011TP SIP对讲求助终端&#xff0c;带功放输出 一、描述 网络对讲终端SV-7011TP&#xff0c;SV-7011TP能处理tcp/ip网络音频流&#xff0c;并驱动扬声器进行播音的终端&#xff0c;主要用于公共数字广播&#xff0c;媒体教学&#xff0c;报警等需要数字音频的领域。 SV-…

LinearAlgebraMIT_12_Graph

x.1 用Incidence matrix关联矩阵表示图 矩阵将图的关系数学表达了出来&#xff0c;如下&#xff0c; x.2 图的性质 如果一个数据结构是图&#xff0c;则意味着其组成关联矩阵的向量组是线性相关的&#xff0c;如果数据结构是树则线性无关。 通过对图的了解&#xff0c;我们可…

激活函数总结(二十四):激活函数补充(SquaredReLU、ModReLU)

激活函数总结&#xff08;二十四&#xff09;&#xff1a;激活函数补充 1 引言2 激活函数2.1 SquaredReLU激活函数2.2 ModReLU激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、ELU、SELU、GELU、Soft…

【iOS】折叠cell

文章目录 前言一、实现效果二、折叠cell的实现原理三、实现折叠cell的高度变化四、实现选中点击的单元格总结 前言 在暑假的3GShare中用到了折叠cell控件&#xff0c;特此总结博客记录 一、实现效果 二、折叠cell的实现原理 首先我们需要知道ScrollView的是TableView的父类&a…

c++11 标准模板(STL)(std::basic_ostringstream)(四)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT> > class basic_ostringstream;(C11 前)template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allo…

Anaconda Prompt输入jupyter lab无反应

问题&#xff1a;Anaconda Prompt界面输入指令无反应 原因&#xff1a;公司电脑勒索病毒防御工具阻止了进程 解决&#xff1a;找到黑名单恢复进程

Modahub魔搭社区:星环向量数据库Transwarp Hippo团队的详细介绍

目录 团队概况 团队特色 团队实践 未来展望 团队概况 星环向量数据库团队,这是一个在星环内部颇具特色的团队。我们的特色在于,我们不仅专注于数据库领域,而且还涵盖了数据应用以及人工智能领域。这种跨领域的合作让我们能够提供更全面、更深入的服务。 我们团队的一个重…

Android Activity启动流程一:从Intent到Activity创建

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、概览二、应用内启动源码流程 (startActivity)2.1 startActivit…

Facebook message tag 使用攻略

Messenger 讯息传不出去&#xff1f;无法发送FB 讯息给非好友&#xff1f; 2020年3月&#xff0c;Facebook 为了防止用户被过多的推广或垃圾讯息困扰而更新使用条款&#xff0c;现在商家要用FB传讯息给所有人&#xff08;包括非好友&#xff09;&#xff0c;应该使用 Facebook …

【管理运筹学】第 6 章 | 运输问题(4,表上作业法 | 闭回路调整法以及特殊情况 | 产销不平衡的运输问题)

文章目录 引言二、表上作业法2.3 改进的方法 —— 闭回路调整法2.4 表上作业法中的特殊情况&#xff08;一&#xff09;无穷多最优解&#xff08;二&#xff09;退化 三、产销不平衡的运输问题3.1 产量大于销量3.2 销量大于产量 写在最后 引言 接下来我们学习表上作业法的最后…

Cocos独立游戏开发框架中的Socket网络模块

引言 本系列是《8年主程手把手打造Cocos独立游戏开发框架》&#xff0c;欢迎大家关注分享收藏订阅。 Socket模块是Cocos游戏开发框架中的重要组成部分之一。通过Socket模块&#xff0c;开发者可以轻松实现游戏中的网络通信功能&#xff0c;使得玩家可以与其他玩家进行实时交互…

Linux 指令心法(一) `ls` 列出目录内容

文章目录 命令的概述和用途命令的用法命令行选项和参数的详细说明命令的示例命令的注意事项或提示 命令的概述和用途 ls 是 “list” 的缩写&#xff0c;它的主要作用是列出目录的内容。 使用 ls 命令可以查看目录中的文件和子目录&#xff0c;以及它们的属性、大小、修改日期…

EasyRecovery15专业mac苹果电脑数据电脑恢复软件

EasyRecovery作为一款专业的电脑数据恢复软件&#xff0c;除了有着优秀的数据恢复能力外&#xff0c;还有许多便捷的操作技巧。今天&#xff0c;我就为大家介绍一下&#xff0c;EasyRecovery下载及恢复界面中的一些使用小技巧。 EasyRecovery 16功能特色 1.EasyRecovery易于使…

第三章 Redis常用命令

第三章 Redis常用命令 学习目标 1 什么是Redis的五大数据类型 redis的存储时 key-value形式的,这里的五大类型指的是 value的五种数据类型 2 相关命令 1 如何对键进行一些操作 2 String类型的value值如何进行操作 3 List 类型的value如何进行操作 4 Set类型的value如何进行…