数学建模:层次分析法

news2024/11/17 9:33:29

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

层次分析法

步骤描述

  1. 将问题条理化,层次化,构建出一个有层次的结构模型。层次分为三类:目标层,准则(指标)层,方案层
  2. 比较指标层中不同指标之间的相对重要程度,并且构建一个成对比较矩阵
    1. 自行判断两个不同指标的相对重要程度。
    2. 如果指标1重要程度大于指标2,并且赋予一个重要程度为3,因此得到其指标1的值为3,
    3. 同理指标2的重要程度小于指标1(不能存在矛盾),因此相对的指标2的值为 1 3 \frac{1}{3} 31
    4. 因此任意两个指标重要度之间存在的关系为: a i j > 0 , a i j = 1 a j i , i , j ∈ ( 1 , 2 , 3 , . . . n ) a_{ij}>0,a_{ij} = \frac{1}{a_{ji}},i,j\in(1,2,3,...n) aij>0aij=aji1i,j(1,2,3,...n)
    5. 接着构建出所有两个指标的这种关系,就可以得到一个关于所有指标两两之间的成对比较矩阵 A n n A_{nn} Ann,其中 n n n 为指标的数量。
  3. 在单一准则下计算指标相对排序的权重,以及进行判断矩阵(成对比较矩阵)的一致性检验
  4. 计算方案层中对于目标层的总排序权重,从而得到评价后的结果。

算法流程

  1. 通过分层与条理化后,我们得到了两两指标之间的成对比较矩阵(判断矩阵):

∣ 1 3 1 1 / 3 1 / 3 1 1 / 2 1 / 5 1 2 1 1 / 3 3 5 5 1 ∣ \left|\begin{array}{cccc}1 & 3 & 1 & 1 / 3 \\1 / 3 & 1 & 1 / 2 & 1 / 5 \\1 & 2 & 1 & 1 / 3 \\3 & 5 & 5 & 1\end{array}\right| 11/313312511/2151/31/51/31

  1. 首先得到判断矩阵的最大特征值对应的特征向量T:

T = [ t 1 t 2 ⋯ t n ] T=\begin{bmatrix}t_1&t_2&\cdots&t_n\end{bmatrix} T=[t1t2tn]

  1. 得到权重向量W:

W = [ w 1 w 2 ⋯ w n ] w i = t i ∑ i = 1 n t i \begin{gathered}W=\begin{bmatrix}w_1&w_2&\cdots&w_n\end{bmatrix}\\\\w_i=\frac{t_i}{\sum_{i=1}^nt_i}\end{gathered} W=[w1w2wn]wi=i=1ntiti

  1. 计算一致性指标 C I CI CI

C I = λ max ⁡ − n n − 1 C I=\frac{\lambda_{\max }-n}{n-1} CI=n1λmaxn

  1. 查找相应的随机平均一致性指标 R I RI RI:如果 n = 5 n = 5 n=5 则表示有五个指标,则 R I = R I ( 1 , 5 ) = 1.12 RI = RI(1,5) = 1.12 RI=RI(1,5)=1.12

请添加图片描述

  1. 计算**一致性比例CR:**当 C R < 0.10 CR<0.10 CR<0.10 时,一致性接受,否则改矩阵应该适当修改参数。

C R = C I R I CR = \frac{CI}{RI} CR=RICI

  1. 计算评价对象的得分:其中 P P P 为归一化后的原始数据, W W W为权重向量

S c o r e = P ⋅ W Score = P \cdot W Score=PW


完整代码

function [Score,W] = mfunc_levelAnalysis(A,data)
    % 层次分析法:求解每个评价对象的综合得分与对应权重
    % paramts: 
    %      A: 两两指标之间的自定义的成对对角矩阵 Shape: (n,n)
    %      data: 原始数据矩阵,(m,n) m为评价对象,n为评价指标
    % returns:
    %      Score:每个评价对象的综合得分
    %      W: 所有指标的权重
    
    % 成对对角矩阵:A判别矩阵
    % A=[1,3,1,1/3;
    %     1/3,1,1/2,1/5;
    %     1,2,1,1/3;
    %     3,5,3,1];
    [n,~]=size(data);
    %Z=zscore(X);
    Z = data ./ repmat(sum(data.*data) .^ 0.5, n, 1); %矩阵归一化
    
    [n,~]=size(A);
    %求特征值特征向量,找到最大特征值对应的特征向量
    [V,D]=eig(A);
    tzz=max(max(D));     %找到最大的特征值
    c1=find(D(1,:)==tzz);%找到最大的特征值位置
    T=V(:,c1);%最大特征值对应的特征向量
    %赋权重
    W=zeros(n,1);
    for i=1:n
    W(i,1)=T(i,1)/sum(T);
    end
    %一致性检验
    CI=(tzz-n)/(n-1);
    RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
    %判断是否通过一致性检验
    CR=CI/RI(1,n);
    if CR>=0.1
       fprintf('没有通过一致性检验\n');
    else
      fprintf('通过一致性检验\n');
    end
     score=Z*W;
     Score=100*score/max(score);
end

有关成对比较矩阵两两指标之间的的相关重要性的程度参考:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/947109.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mybatis1.6 添加数据

1.6 添加数据 1.6.1 编写接口方法1.6.2 编写SQL语句1.6.3 编写测试方法1.6.4 添加-主键返回 如上图是我们平时在添加数据时展示的页面&#xff0c;而我们在该页面输入想要的数据后添加 提交 按钮&#xff0c;就会将这些数据添加到数据库中。接下来我们就来实现添加数据的操作。…

前端调用电脑摄像头

项目中需要前端调用&#xff0c;所以做了如下操作 先看一下效果吧 主要是基于vue3&#xff0c;通过canvas把画面转成base64的形式&#xff0c;然后是把base64转成 file文件&#xff0c;最后调用了一下上传接口 以下是代码 进入页面先调用一下摄像头 navigator.mediaDevices.ge…

低成本32位单片机电动工具无感方波控制方案

RAMSUN介绍基于灵动32位微处理器MM32SPIN0230的BLDC电动工具无感方波控制方案&#xff0c;包括MM32SPIN0230芯片资源。 以下是电动工具无感方波控制方案的简述&#xff1a; MM32SPIN0230电动工具专用板 芯片介绍 MM32SPIN0230系列是灵动微MindSPIN旗下高性能的单电机控制产品…

04-基础例程4

基础例程4 1、RGB彩灯 实验介绍 ​ WS2812B是一款智能控制的LED光源&#xff0c;控制电路和RGB芯片集成在一个5050组件的封装中。 ​ 可以将多个RGB灯珠级联&#xff0c;如下图所示&#xff1a; ​ 3个最基本的颜色为红、绿、蓝&#xff08;RGB&#xff09;&#xff0c;均是…

Elasticsearch实战(三):Springboot实现Elasticsearch搜索推荐

文章目录 系列文章索引一、什么是搜索推荐二、新增测试数据三、搜索推荐的实现1、es官网2、Java实现搜索推荐3、总结 系列文章索引 Elasticsearch实战&#xff08;一&#xff09;&#xff1a;Springboot实现Elasticsearch统一检索功能 Elasticsearch实战&#xff08;二&#x…

Python asyncio 性能分析

文章目录 1. 工具1.1 cProfile2.1 yappi 2. 可视化2.1 SnakeViz2.2 gprof2dot 1. 工具 1.1 cProfile 一般对分析python性能的工具都会用cprofile。但是这玩意对多线程和asyncio的支持并不友好&#xff0c;如果用它对asyncio分析&#xff0c;会发现CPU都耗费在了poll上面&…

动态维护直径 || 动态维护树上路径 || 涉及LCA点转序列 || 对欧拉环游序用数据结构维护:1192B

https://www.luogu.com.cn/problem/CF1192B 对于直径的求法&#xff0c;常用dp或两次dfs&#xff0c;但如果要动态维护似乎都不太方面&#xff0c;那么可以维护树上路径最大值。 树上路径为&#xff1a; d e p u d e p v − 2 d e p l c a ( u , v ) dep_udep_v-2\times de…

如何实现AI的矢量数据库

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建3D应用场景 然而&#xff0c;人工智能模型有点像美食厨师。他们可以创造奇迹&#xff0c;但他们需要优质的成分。人工智能模型在大多数输入上都做得很好&#xff0c;但如果它们以最优化的格式接收输入&#xff0c;它们就会真正…

Python的pymysql模块与MySQL数据库的互动:基础与实例

Python的pymysql模块与MySQL数据库的互动&#xff1a;基础与实例 一、连接数据库二、创建游标三、执行SQL命令四、关闭连接 在Python的世界里&#xff0c;操作MySQL数据库最常用的库就是pymysql。 pymysql是一个灵活且易于使用的库&#xff0c;它允许我们以Python的方式操作MyS…

网络安全研究和创新:探讨网络安全领域的最新研究成果、趋势和创新技术,以及如何参与其中。

第一章&#xff1a;引言 随着数字化时代的到来&#xff0c;网络安全变得比以往任何时候都更加重要。无论是个人、企业还是国家&#xff0c;都面临着日益复杂和隐蔽的网络威胁。为了确保我们的信息和资产的安全&#xff0c;网络安全研究变得至关重要。本文将深入探讨网络安全领…

搭建 Qt6 + Visual Studio 开发环境

作者&#xff1a; 一去、二三里 个人微信号&#xff1a; iwaleon 微信公众号&#xff1a; 高效程序员 在 Windows 中&#xff0c;如果想要开发 Qt 应用程序&#xff0c;可以选择多种方式&#xff1a; Qt Creator MinGW 编译器Qt Creator MSVC 编译器Visual Studio&#xff0…

【前车之鉴】: 2023最新教程-将java程序打包到maven私服的正确打开方式,详细流程介绍不怕你掌握不了

文章目录 为什么看这篇整体流程1. 注册账号【首次需要】2. 工单申请【新项目必须】3. 项目配置【新项目必须】4. 授权认证【新项目必须】5. 一键发布 最后也很重要 为什么看这篇 一是当前网络上一些博客有遗漏部分&#xff0c;这里做补充&#xff0c;二是网上思路没错&#xff…

Ansible自动化运维工具(二)

目录 &#xff08;6&#xff09;copy模块 &#xff08;7&#xff09;file模块 ​编辑​编辑&#xff08;8&#xff09;hostname模块 &#xff08;9&#xff09;ping模块 &#xff08;10&#xff09;yum 模块 &#xff08;11&#xff09;service/system模块 ​编辑 ​…

11.TIM定时中断

STM32标准库开发-总目录-传送门 目录 TIM简介 定时器类型 基本定时器 1.基本定时器时基单元 2.时基单元的工作流程 3.主模式触发DAC的功能 通用定时器 1.通用定时器与基本定时器异同 2.内外时钟源选择功能 3. 编码器接口功能 4.主从触发模式功能 5.输出比较功能 6…

Excel:通过Lookup函数提取指定文本关键词

函数公式&#xff1a;LOOKUP(9^9,FIND($G 2 : 2: 2:G 6 , C 2 ) , 6,C2), 6,C2),G 2 : 2: 2:G$6) 公式解释&#xff1a; lookup第一参数为9^9&#xff1a;代表的是一个极大值的数据&#xff0c;查询位置里面最接近这一个值的数据&#xff1b;lookup第二参数用find函数代替&am…

【ES】笔记-集合介绍与API

集合是一种不允许值重复的顺序数据结构。 通过集合我们可以进行并集、交集、差集等数学运算&#xff0c; 还会更深入的理解如何使用 ECMAScript 2015(ES2015)原生的 Set 类。 构建数据集合 集合是由一组无序且唯一(即不能重复)的项组成的。该数据结构使用了与有限集合相同的数…

基于AVR128单片机抢答器proteus仿真设计

一、系统方案 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 void timer0_init() //定时器初始化 { TCCR00x07; //普通模式&#xff0c;OC0不输出&#xff0c;1024分频 TCNT0f_count; //初值&#xff0c;定时为10ms TIFR0x01; //清中断标志…

【单片机】UART、I2C、SPI、TTL、RS232、RS422、RS485、CAN、USB、SD卡、1-WIRE、Ethernet等常见通信方式

在单片机开发中&#xff0c;UART、I2C、RS485等普遍在用&#xff0c;这里做一个简单的介绍 UART通用异步收发器 UART口指的是一种物理接口形式(硬件)。 UART是异步&#xff08;指不使用时钟同步&#xff0c;依靠帧长进行判断&#xff09;&#xff0c;全双工&#xff08;收发…

比较器的工作原理及性能指标介绍

一、什么是比较器 比较器的功能是比较两个或更多数据项&#xff0c;以确定它们是否相等&#xff0c;或者确定它们之间的大小关系和排列顺序&#xff0c;这称为比较。可以实现此比较功能的电路或设备称为比较器。比较器是将模拟电压信号与参考电压进行比较的电路。比较器的两个…

DHCP(自动获取IP地址技术)第六课

一 DHCP的概念 DHCP (Dynamic Host Configuration Protocol) 是一种自动分配IP地址和其他网络配置的网络协议。它允许设备在加入网络时自动获取所需的网络配置&#xff0c;如IP地址、子网掩码、默认网关、DNS服务器等。 DHCP通过中央服务器&#xff08;DHCP服务器&#xff09…