ClickHouse进阶(三):ClickHouse 索引

news2025/1/23 3:19:51

进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容!

🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客

📌订阅:拥抱独家专题,你的订阅将点燃我的创作热情!

👍点赞:赞同优秀创作,你的点赞是对我创作最大的认可!

⭐️ 收藏:收藏原创博文,让我们一起打造IT界的荣耀与辉煌!

✏️评论:留下心声墨迹,你的评论将是我努力改进的方向!

目录

1. 一级索引

2. 二级索引(跳数索引)


1. 一级索引

在MergeTree中PRIMARY KEY 主键并不用于去重,而是用于索引,加快查询速度,MergeTree会根据index_granularity间隔(默认8192行),为数据表生成一级索引并保存至primary.idx文件内,索引数据按照PRIMARY KEY 排序,相对于使用PRIMARY KEY 更常见的方式是通过ORDER BY 方式指定主键。

  • 稀疏索引

primary.idx文件内的一级索引采用稀疏索引实现。有稀疏索引就有稠密索引,二者区别如下:

在稠密索引中每一行索引标记都会对应到一行具体的数据记录。而在稀疏索引中每一行索引标记对应的是一段数据,而不是一行。

稀疏索引的优势显而易见,仅需要使用少量的索引标记就能够记录大量的数据区间位置信息,而且数据量越大优势越明显。在MergeTree系列引擎表中对应的primary.idx文件就是稀疏索引,由于稀疏索引占用空间小,所以primary.idx内的索引数据常驻内存。

  • 索引粒度

在clickhouse MergeTree引擎中默认的索引粒度是8192,参数为index_granularity,一般我们不会修改此值,按照默认8192即可。我们可以通过以下sql语句查看每个MergeTree引擎表对应的index_granulariry的值:

node1 :) show create table t_mt;

索引粒度对于MergeTree表引擎非常重要,可以根据整个数据的长度,按照索引粒度对数据进行标注,然后抽取对应的数据形成索引。

  • 索引形成过程

表数据以index_granularity的粒度(默认8192)被标记成多个小区间,其中每个区间最多8192行数据,每个区间标记后形成一个MarkRange,通过start和end表示MarkRange的具体范围,数据文件也会按照index_granularity的间隔粒度生成压缩数据块。由于是稀疏索引,MergeTree需要间隔index_granularity行数据生成一条索引,同时对应一个索引编号,每个MarRange与一个索引编号对应,通过与start及end对应的索引编号的取值,可以得到对应的数值区间;索引编号对应的索引值会依据声明的主键字段获取,最终索引编号和索引值被写入primary.idx文件中保存。

假设现在有一份测试数据,共192行记录,其中主键ID为String类型,ID值从A000开始,后面依次为A001、A002...直到A192为止,假设我们设置MergeTree的索引粒度index_granularity=3,根据索引的生成规则,primary.idx文件内的索引数据如下:

根据索引数据,MergeTree将此数据片段划分成192/3=64个小的MarkRange,其中所有MarkRange的最大数值区间为[A000,+inf),划分的MarkRange如下:

索引查询过程

使用索引查询其实就是两个数值区间的交集判断,其中一个区间是有基于主键的查询条件转换而来的条件区间,而另一个区间是上图中MarkRange对应的数值区间。

整个索引查询的过程大致分为3个步骤:

1) 生成查询条件区间

查询时首先将查询条件转换为条件区间,即便是单个值的查询条件也会转换成区间的形式,例如:

WHERE ID='A003'

['A003','A003']



WHERE ID>'A000'

['A000',+inf]



WHERE ID<'A188'

(-inf,'A188']



WHERE ID like 'A006%'

('A006','A007']

2) 递归交集判断

以递归的方式依次对MarkRange的数值区间与条件区间做交集判断,从最大的区间[A000,+inf)开:

  • 如果不存在交集,则直接忽略掉整段MarkRange
  • 如果存在交集,且MarkRange步长大于8(end-start),则将此区间进一步拆分成8个区间(由merge_tree_coarse_index_granularity指定,默认值为8),并重复此规则,继续做递归交集判断。
  • 如果存在交集,且MarkRange不可再分解(步长小于8),则记录MarkRange并返回。

3) 合并MarkRange区间

将最终匹配的MarkRange聚在一起,合并他们的范围。

当查询条件WHERE ID ='A003'的时候,最终读取[A000,A003)和[A003,A006]两个区间的数据即可,他们对应的MarkRange(start:0,end:2)范围,而无其他无用的区间都被裁剪过滤掉,因为MarkRange转换的数值区间是闭区间,所以会额外匹配到临近的一个区间,完整的逻辑图如下图所示:

2. 二级索引(跳数索引)

除了一级索引之外,MergeTree同样支持二级索引,二级索引又称为跳数索引,由数据的聚合信息构建而成,根据索引类型的不同,其聚合信息的内容也不同,跳数索引的目的与一级索引一样,也是帮助查询时减少数据扫描的范围。

跳数索引需要在Create语句内定义,完整语法如下:

INDEX index_name expr TYPE index_type(...) GRANULARITY granularity

对以上参数的解释如下:

  1. index_name:定义的二级索引名称
  2. index_type:跳数索引类型,最常用就是minmax索引类型。minmax索引记录了一段数据内的最小和最大极值,其索引的作用类似分区目录,能够快速跳过无用的数据区间。
  3. granularity:定义聚合信息汇总的粒度。

与一级索引一样,如果在建表语句中声明了跳数索引,则会在路径“/var/lib/clickhouse/data/DATABASE/TABLE/PARTITION/”目录下生成索引与标记文件(skp_idx.idx与skp_idx.mrk)。

在接触跳数索引时,很容易将index_granularity与granularity概念混淆,对于跳数索引而言,index_granularity定义了数据的粒度,而granularity定义了聚合信息汇总的粒度,也就是说,granularity定义了一行跳数索引能够跳过多少个index_granularity区间的数据。

  • minmax跳数索引的生成规则

minmax跳数索引聚合信息是在一个index_granularity区间内数据的最小和最大极值。首先,数据按照index_granularity粒度间隔将数据划分成n段,总共有[0~n-1]个区间(n=total_rows/index_granularity,向上取整),接着根据跳数索引从0区间开始,依次按index_granularity粒度从数据中获取聚合信息,每次向前移动1步,聚合信息逐步累加,最后当移动granularity次区间时,则汇总并生成一行跳数索引数据。

以下图为例:假设index_granularity=8192且granularity=3,则数据会按照index_granularity划分成n等份,MergeTree从第0段分区开始,依次获取聚合信息,当获取到第3个分区时(granularity=3),则汇总并生成第一行minmax索引(前3段minmax极值汇总后取值为[1,9])。

minmax跳数索引案例:

#删除表 t_mt

node1 :) drop table t_mt;



#重新创建t_mt表,包含二级索引

node1 :)CREATE TABLE t_mt

(

   id UInt8,

   name String,

   age UInt8,

   birthday Date,

   location String,

   INDEX a id TYPE minmax GRANULARITY 5

)

ENGINE = MergeTree

PARTITION BY toYYYYMM(birthday)

ORDER BY (id, age)

PRIMARY KEY id



#插入数据

insert into t_mt values (1,'张三',18,'2021-06-01','上海'), (2,'李四',19,'2021-02-10','北京'), (3,'王五',12,'2021-06-01','天津'), (1,'马六',10,'2021-06-18','上海'), (5,'田七',22,'2021-02-09','广州');



#查看数据分区路径


 👨‍💻如需博文中的资料请私信博主。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/946740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最简单vue获取当前地区天气--高德开放平台实现

目录 前言 一、注册成为高德平台开发者 二、注册天气key 1.点击首页右上角打开控制台 2.创建新应用 三、vue项目使用 1.打开vue项目找到public下的index.html&#xff0c;如果是vue3的话直接在主目录打开index.html文件就行&#xff0c;主要就是打开出口文件 ​编辑 2.根据高德…

电缆厂 3D 可视化管控系统 | 图扑数字孪生

近年来&#xff0c;我国各类器材制造业已经开始向数字化生产转型&#xff0c;使得生产流程变得更加精准高效。通过应用智能设备、物联网和大数据分析等技术&#xff0c;企业可以更好地监控生产线上的运行和质量情况&#xff0c;及时发现和解决问题&#xff0c;从而提高生产效率…

Java seven 解读正则表达式、java方法的使用

目录 Java 正则表达式1. java.util.regex 包2. 捕获组3. 正则表达式语法4. Matcher 类的方法 Java 方法1. 定义&#xff1a;2. 优点3. 命名规则4. 方法调用5. 方法的重载6. 构造方法7. 可变参数8. finalize() 方法 Java 正则表达式 1. java.util.regex 包 Pattern 类&#xff…

下面是实践百度飞桨上面的pm2.5分类项目_logistic regression相关

part1:数据的引入&#xff0c;和前一个linear regression基本是一样 part2:数据解析——也就是数据的“规格化” 首先&#xff0c;打算用dataMat[]和labelMat[]数据存储feature和label&#xff0c;并且文件变量fr 然后&#xff0c;是这个for line in fr.readlines()循环&#…

Java生成二维码(前后端分离项目实战)

&#x1f4cd; 本文代码已放置 github&#xff1a;Mr-Write/SpringbootDemo: 各种demo案例 (github.com) 文章目录 1.ZXing1.1 概念1.2 ZXing 相关依赖1.3 zxing常用API&#x1f340; EncodeHintType&#xff08;编码提示类型&#xff09;&#x1f340; MultiFormatWriter&…

Java面试之用两个栈实现队列

文章目录 题目一、什么是队列和栈&#xff1f;1.1队列1.2栈 二、具体实现2.1 思路分析2.2代码实现 题目 用两个栈实现一个队列&#xff0c;实现在队列尾部插入节点和在队列头部删除节点的功能。 一、什么是队列和栈&#xff1f; 1.1队列 队列是一种特殊的线性表&#xff0c;…

ceph对象三元素data、xattr、omap

这里有一个ceph的原则&#xff0c;就是所有存储的不管是块设备、对象存储、文件存储最后都转化成了底层的对象object&#xff0c;这个object包含3个元素data&#xff0c;xattr&#xff0c;omap。data是保存对象的数据&#xff0c;xattr是保存对象的扩展属性&#xff0c;每个对象…

如何将 PDF 转换为 Word:前 5 个应用程序

必须将 PDF 转换为 Word 才能对其进行编辑和自定义。所以这里有 5 种很棒的方法 PDF 文件被广泛使用&#xff0c;因为它非常稳定且难以更改。这在处理法律合同、财务文件和推荐信等重要文件时尤其重要。但是&#xff0c;有时您可能需要编辑 PDF 文件。最好的方法是使用应用程序…

2. Series对象-一维数据

【目录】 文章目录 2. Series对象-一维数据1. 知识回顾-创建字典2. 调用库的类、函数、变量语法3. 实例化类创建一个对象4. Series一维数组5. pd.Series创建一个Series对象6. data 列表7. 同时传入data和index8. data 字典9. Series对象的3要素&#xff1a;索引数据类型9.1 d…

06-基础例程6

基础例程6 01、WIFI实验—WebServer 实验介绍 ​ 连接路由器上网是我们每天都做的事情&#xff0c;日常生活中只需要知道路由器的账号和密码&#xff0c;就可以使用手机或电脑连接到路由器&#xff0c;然后上网。 ​ 连接路由器&#xff0c;将ESP32的IP地址等信息通过shell…

TensorFlow-slim包进行图像数据集分类---具体流程

TensorFlow中slim包的具体用法 1、训练脚本文件&#xff08;该文件包含数据下载打包、模型训练&#xff0c;模型评估流程&#xff09;3、模型训练1、数据集相关模块&#xff1a;2、设置网络模型模块3、数据预处理模块4、定义损失loss5、定义优化器模块 本次使用的TensorFlow版本…

【FreeRTOS】【应用篇】消息队列【下篇】

前言 本篇文章主要对 FreeRTOS 中消息队列的概念和相关函数进行了详解消息队列【下篇】详细剖析了消息队列中发送、接收时队列消息控制块中各种指针的行为&#xff0c;以及几个发送消息和接收消息的函数的运作流程笔者有关于 【FreeRTOS】【应用篇】消息队列【上篇】——队列基…

文件属性与目录

目录 Linux 系统中的文件类型普通文件目录文件字符设备文件和块设备文件符号链接文件管道文件套接字文件总结 stat 函数struct stat 结构体st_mode 变量struct timespec 结构体练习 fstat 和lstat 函数fstat 函数lstat 函数 文件属主有效用户ID 和有效组IDchown 函数fchown 和l…

WebGL矩阵变换库

目录 矩阵变换库&#xff1a; Matrix4对象所支持的方法和属性如表所示&#xff1a; 方法属性规范&#xff1a; 虽然平移、旋转、缩放等变换操作都可以用一个44的矩阵表示&#xff0c;但是在写WebGL程序的时候&#xff0c;手动计算每个矩阵很耗费时间。为了简化编程&#xf…

74 # koa 的基本使用

koa 是对 http 的一个封装&#xff0c;实现了一个 node 框架&#xff0c;可以根据这个框架实现自己的 MVC 框架。 每个人用 koa 的方式都大不一样&#xff0c;无法做到约定性&#xff0c;所以才会有 egg 基于 koa 封装的约定性的框架。 安装 npm init -y npm install koa使用…

502 bad gateway什么意思502 bad gateway问题解决办法

502 bad gateway是一种常见互联网连接错误&#xff0c;大部分情况就是打不开页面&#xff0c;连接不上网络&#xff0c;访问服务器挂了等问题&#xff0c;下面来看看具体解决方法&#xff0c;希望能够帮助你解决问题。 502 bad gateway什么意思 简单说就是服务器没有收到回应&…

LINQ-查询表达式

文章速览 概述使用注意查询子句实例 概述 LINQ是一组技术的名称&#xff0c;这些技术建立在将查询功能直接集成到C#语言&#xff08;以及Visual Basic和可能的任何其他.NET语言&#xff09;的基础上。借助于LINQ&#xff0c;查询已是高级语言构造&#xff0c;就如同类、方法和…

Ubuntu 18.04上无法播放MP4格式视频解决办法

ubuntu18.04系统无法播放MP4格式视频&#xff0c;提示如下图所示&#xff1a; 解决办法&#xff1a; 1、首先&#xff0c;确保ubuntu系统已完全更新。可使用以下命令更新软件包列表&#xff1a;sudo apt update&#xff0c;然后使用以下命令升级所有已安装的软件包&#xff1a…

poi-tl设置图片(通过word模板替换关键字,然后转pdf文件并下载)

选中图片右击 选择设置图片格式 例如word模板 maven依赖 <!-- java 读取word文件里面的加颜色的字体 转pdf 使用 --><dependency><groupId> e-iceblue </groupId><artifactId>spire.doc.free</artifactId><version>3.9.0</ver…

数据的语言:学习数据可视化的实际应用

数据可视化应该学什么&#xff1f;这是一个在信息时代越来越重要的问题。随着数据不断增长和积累&#xff0c;从社交媒体到企业业务&#xff0c;从科学研究到医疗健康&#xff0c;我们都面临着海量的数据。然而&#xff0c;数据本身往往是冰冷、抽象的数字&#xff0c;对于大多…