机器学习-神经网络(西瓜书)

news2024/11/24 2:50:10

神经网络

5.1 神经元模型

在生物神经网络中,神经元之间相互连接,当一个神经元受到的外界刺激足够大时,就会产生兴奋(称为"激活"),并将剩余的"刺激"向相邻的神经元传导。
在这里插入图片描述

神经元模型
模型中 x i x_i xi表示各个神经元传来的刺激,刺激强度有大有小,所以 w i w_i wi表示不同刺激的权重,Θ表示阈值。一段刺激经过加权汇总再减去神经元的阈值后,经过激活函数 f f f处理,就是一个输出y,它如果不为0,那么y就会作用到其他神经元当中,就如同 x i x_i xi一样作为输入。

前面提到的激活函数 f f f一般表示为:
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x) = \frac{1}{1+e^{-x}} sigmoid(x)=1+ex1

5.2 感知机与多层网络

  • 感知机能快速实现与,或,非逻辑运算,它由两层神经元组成,输入层接受信号好传递到输出层,并在输出层进行激活函数处理。
    在这里插入图片描述

输出计算方法为:
y = f ( ∑ i w i x i − Θ ) y = f(\sum_{i}w_ix_i-Θ) y=f(iwixiΘ)
以"与"运算为例( x 1 x_1 x1 x 2 x_2 x2):令两个w值为1,Θ(阈值)为2,则有
y = f ( 1 × x 1 + 1 × x 2 − 2 ) y=f(1×x_1+1×x_2-2) y=f(1×x1+1×x22)

只在x均为1时,y才为1

  • 常见的神经网络如下图所示的层级结构,每层神经元与下一层的互相连接,称为"多层前馈神经网络",神经网络学习到的内容,存在于前面提到的连接权 w i w_i wi和阈值 Θ Θ Θ里。
    在这里插入图片描述

5.3 误差逆传播算法(简称BP)

多层网络的学习能力强于单层感知机,可以用BP算法进行训练,通过计算实际输出与期望输出之间的误差,再将这份误差反向传播到网络的每一层,从而调整网络中的权重,这个过程会迭代进行,直到训练效果达到预期。
累计误差表示为:
E = 1 m ∑ k = 1 m E k E=\frac{1}{m}\sum^m_{k=1}E_k E=m1k=1mEk
具体步骤的伪代码为:

1.初始化网络的权重和阈值
2.对于每个训练样本,进行前向传播计算:
    将输入样本传递给输入层
    计算隐藏层的输出,使用激活函数(前面提到的Sigmoid函数)
    将隐藏层的输出传递给输出层,再次使用激活函数
3.计算输出层的误差(期望输出与实际输出的差值)
4.反向传播误差:
    根据误差和激活函数的导数,计算输出层的梯度
    将输出层的梯度传播回隐藏层,再根据权重调整梯度
    更新隐藏层到输出层的权重
    把隐藏层的梯度传播回输入层,根据权重调整梯度
    更新输入层到隐藏层的权重
5.重复2-4步骤,直到达到预定的训练次数或者收敛了
6.使用训练好的网络进行预测

BP神经网络经常出现"过拟合"现象,表现为:训练误差持续降低,测试误差上升。解决的方法有两种:

  • 第一种是"早停":把数据集分为训练集和验证集,前者就是做上述伪代码的工作,即计算梯度,更新权重等;验证集用来估计误差(如分类任务中的分类准确率),当出现训练误差减小但验证误差提升时,停止训练,同时返回具有最小验证集误差的权重和阈值。
  • 第二种是"正则化",在误差目标函数中加入一个描述网络复杂度的部分,通过对模型的复杂度进行惩罚(如限制模型的参数或权重的大小)来防止过拟合

深度学习

深度学习模型通过"增加隐层"的数目,提高训练效率,降低过拟合的风险。
在这里插入图片描述

以第二章的手写体识别为例,网络输入是一个32×32的手写数字图像,输出是算法的识别结果,过程以伪代码的形式呈现。

对所有手写数字文本
    将加载的32×32矩阵转为一行1024的向量
    把文本对应的数字转化为one-hot向量(某个值为1,其余均为0)
构建神经网络:设置网络的隐藏层数,各隐藏层神经元个数,激活函数学习率,优化方法,最大迭代次数
做测试

隐藏层中的神经元能直接影响网络的学习能力,但是如果数量过多容易导致出现过拟合现象,选取合适参数的方法有

  • 手动筛选:给定一个范围,如:比较50,100,500的效果,如果200的效果优于其他两者,那么就从50到100间再选择一个数值,但这个方法有点慢
  • 正则化技术:以L1正则化(L1 Regularization)为例:L1正则化通过在损失函数中添加参数的绝对值之和,来惩罚模型中的大参数。这导致一些参数变为零,从而实现特征选择和稀疏性。L1正则化可以促使模型更加稀疏,即只有少数参数对模型的预测起作用,其他参数趋近于零。

实验:比较隐藏层不同神经元个数的多层感知机的实验效果

(学习率均为0.0001,迭代次数为2000)

clf = MLPClassifier(hidden_layer_sizes=(100,),
                    activation='logistic', solver='adam',
                    learning_rate_init=0.0001, max_iter=2000)
print(clf)

变量为神经元个数,分别是50,100,500,1000
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验分析:神经元个数从50逐渐升到500个的过程中,网络对目标特征的抓取能力逐渐提升,所以识别的正确率随之提高。但在个数跳到1000时正确率没有提高,可能是因为个数在达到1000之前,多层感知机就已经收敛了,个数继续增加相当于时过度训练数据,提高网络复杂度,这并不会带来增益。能测试的变量还有迭代次数和学习率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/942149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Cento7 Docker-compose安装RabbitMQ

RabbitMQ是一个消息中间件,是用Erlang语言编写的。RabbitMQ据说具有良好的性能和时效性,同时还能够非常好的支持集群和负载部署,非常适合在较大规模的分布式系统中使用。接下来我们就以docker形式安装。 1.先安装docker环境 yum -y install…

MATLAB算法实战应用案例精讲-【自然语言处理】语义分割模型-DeepLabV3

目录 1、DeepLab系列简介 1.1.DeepLabV1 1.1.1创新点: 1.1.2. 动机: 1.1.3. 应对策略: 1.2.DeepLabV2 1.2.1.创新点: 1.2.2.动机 1.2.3. 应对策略: 1.3.DeepLabV3 1.3.1创新点: 1.3.2. 动机&am…

【大魔王送书第一期】《一名阿里服务端开发工程师的进阶之路》

一、前言 目前,资讯、社交、游戏、消费、出行等丰富多彩的互联网应用已经渗透到了人们生活和工作的方方面面,正深刻改变着信息时代。随着用户规模的增长和应用复杂度的上升,服务端面临的技术挑战越来越严峻。在头部互联网企业,服…

Docker:Harbor 私有仓库迁移

Harbor 私有仓库迁移 一.私有仓库迁移的介绍 1.为何要对Harbor 私有仓库的迁移 (1)硬件升级或更换:如果源 Harbor 在旧的硬件设备上运行,并且计划将其迁移到新的硬件设备上,那么需要执行迁移操作。 (2&…

17万字集团大数据平台整体方案word

导读:原文《17万字集团大数据平台整体方案word》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。以下是部分内容, 1.1.1 总体目标 根据集团信…

第八章 贪心算法 part03 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果 (day34补)

本文章代码以c为例! 一、力扣第1005题:K 次取反后最大化的数组和 题目: 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择…

【如何对公司网络进行限速?一个案例详解】

有不少朋友问到了关于企业网络QoS配置,这个确实在实际网络应用中非常多,基本上大部分企业或个人都用到这个功能,本期我们详细了解下QoS如何对宽带进行限制,QoS如何企业中应用。 一、什么是QoS? Qos是用来解决网络延迟和阻塞等问…

JavaScript—BOM

BOM是什么? Browser Object Model是浏览器对象模型 官方:浏览器对象模型提供了独立于内容的、可以与浏览器窗口进行互动的对象结构,BOM由多个对象构成,其中代表浏览器窗口的window对象是BOM的顶层对象,其他对象都是该…

SSM(Spring+SpringMVC+MyBatis)整合

目录 1、提出问题 2、解决问题 3、相关文件 1、提出问题 SSM(SpringSpringMVCMyBatis)的开发,MyBatis在没有与Spring和SpringMVC整合的时候,是单独使用,单独配置。 Spring和SpringMVC的整合是无缝衔接的&#xff0…

听力和阅读都是6.5分,写作和口语6分,最后评分会是多少分

听力和阅读都是6.5分,写作和口语6分,最后评分会是多少分 根据雅思评分标准,每个模块的分数将会被四舍五入到0.5分的精度。在你的情况下,如果听力和阅读都是6.5分,写作和口语都是6分,那么你的最终雅思总分将…

JVM下篇知识

第01章:概述篇 第02章:JVM监控及诊断工具-命令行篇 第03章:JVM监控及诊断工具-GUI篇 第04章:JVM运行时参数 第05章:分析GC日志

【腾讯云 TDSQL-C Serverless 产品测评】- 云原生时代的TDSQL-C MySQL数据库技术实践

一、活动介绍: “腾讯云 TDSQL-C 产品测评活动”是由腾讯云联合 CSDN 推出的针对数据库产品测评及产品体验活动,本次活动主要面向 TDSQL-C Serverless版本,初步的产品体验或针对TDSQL-C产品的自动弹性能力、自动启停能力、兼容性、安全、并发…

18.神奇导航菜单指示器

效果 源码 <!DOCTYPE html> <html> <head> <title>Magic Menu Indicator | 03</title> <link rel="stylesheet" type="text/css" href="style.css"> </head> <body><div class="navig…

时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比

时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比 目录 时序预测 | MATLAB实现基于PSO-LSTM、LSTM时间序列预测对比效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现基于PSO-LSTM、LSTM时间序列预测。 1.Matlab实现PSO-LSTM和LSTM神经网络时间序列预测…

QT下使用ffmpeg+SDL实现音视频播放器,支持录像截图功能,提供源码分享与下载

前言&#xff1a; SDL是音视频播放和渲染的一个开源库&#xff0c;主要利用它进行视频渲染和音频播放。 SDL库下载路径&#xff1a;https://github.com/libsdl-org/SDL/releases/tag/release-2.26.3&#xff0c;我使用的是2.26.3版本&#xff0c;大家可以自行选择该版本或其他版…

【数据结构大全】你想要的都有,数组、链表、堆栈、二叉树、红黑树、B树、图......

目录 1.概述 2.线性结构 3.时间复杂度 4.查找算法 5.树 6.图 1.概述 博主之前写过一个完整的关于数据结构的系列文章&#xff0c;一共十三篇&#xff0c;内容包含&#xff0c;数组、链表、堆栈、队列、时间复杂度、顺序查找、二分查找、二叉树、二叉搜索树、平衡二叉树、…

【Android-Flutter】我的Flutter开发之旅

目录: 0、文档&#xff1a;1、在Windows上搭建Flutter开发环境&#xff08;1&#xff09;[使用中国镜像(❌详细看官方文档)](https://docs.flutter.dev/community/china)&#xff08;2&#xff09;[下载最新版Flutter SDK&#xff08;已包含Dart&#xff09;](https://docs.flu…

从项目中突显技能:在面试中讲述你的编程故事

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

华为数通方向HCIP-DataCom H12-821题库(单选题:141-160)

第141题 Router-LSA 能够描述不同的链路类型&#xff0c;不属于Router LSA 链路类型的是以下哪一项? A、Link Type 可以用来描述到末梢网络的连接&#xff0c;即 SubNet B、Link Type 可以用来描述到中转网络的连接&#xff0c;即 TranNet C、Link Type 可以用来描述到另一…

16.CSS菜单悬停特效

效果 源码 <!DOCTYPE html> <html> <head> <title>Creative Menu Item Hover Effects</title> <link rel="stylesheet" type="text/css" href="style.css"> </head> <body><section><…