神经网络
5.1 神经元模型
在生物神经网络中,神经元之间相互连接,当一个神经元受到的外界刺激足够大时,就会产生兴奋(称为"激活"),并将剩余的"刺激"向相邻的神经元传导。
神经元模型
模型中
x
i
x_i
xi表示各个神经元传来的刺激,刺激强度有大有小,所以
w
i
w_i
wi表示不同刺激的权重,Θ表示阈值。一段刺激经过加权汇总再减去神经元的阈值后,经过激活函数
f
f
f处理,就是一个输出y,它如果不为0,那么y就会作用到其他神经元当中,就如同
x
i
x_i
xi一样作为输入。
前面提到的激活函数
f
f
f一般表示为:
s
i
g
m
o
i
d
(
x
)
=
1
1
+
e
−
x
sigmoid(x) = \frac{1}{1+e^{-x}}
sigmoid(x)=1+e−x1
5.2 感知机与多层网络
- 感知机能快速实现与,或,非逻辑运算,它由两层神经元组成,输入层接受信号好传递到输出层,并在输出层进行激活函数处理。
输出计算方法为:
y
=
f
(
∑
i
w
i
x
i
−
Θ
)
y = f(\sum_{i}w_ix_i-Θ)
y=f(i∑wixi−Θ)
以"与"运算为例(
x
1
x_1
x1交
x
2
x_2
x2):令两个w值为1,Θ(阈值)为2,则有
y
=
f
(
1
×
x
1
+
1
×
x
2
−
2
)
y=f(1×x_1+1×x_2-2)
y=f(1×x1+1×x2−2)
只在x均为1时,y才为1
- 常见的神经网络如下图所示的层级结构,每层神经元与下一层的互相连接,称为"多层前馈神经网络",神经网络学习到的内容,存在于前面提到的连接权
w
i
w_i
wi和阈值
Θ
Θ
Θ里。
5.3 误差逆传播算法(简称BP)
多层网络的学习能力强于单层感知机,可以用BP算法进行训练,通过计算实际输出与期望输出之间的误差,再将这份误差反向传播到网络的每一层,从而调整网络中的权重,这个过程会迭代进行,直到训练效果达到预期。
累计误差表示为:
E
=
1
m
∑
k
=
1
m
E
k
E=\frac{1}{m}\sum^m_{k=1}E_k
E=m1k=1∑mEk
具体步骤的伪代码为:
1.初始化网络的权重和阈值
2.对于每个训练样本,进行前向传播计算:
将输入样本传递给输入层
计算隐藏层的输出,使用激活函数(前面提到的Sigmoid函数)
将隐藏层的输出传递给输出层,再次使用激活函数
3.计算输出层的误差(期望输出与实际输出的差值)
4.反向传播误差:
根据误差和激活函数的导数,计算输出层的梯度
将输出层的梯度传播回隐藏层,再根据权重调整梯度
更新隐藏层到输出层的权重
把隐藏层的梯度传播回输入层,根据权重调整梯度
更新输入层到隐藏层的权重
5.重复2-4步骤,直到达到预定的训练次数或者收敛了
6.使用训练好的网络进行预测
BP神经网络经常出现"过拟合"现象,表现为:训练误差持续降低,测试误差上升。解决的方法有两种:
- 第一种是"早停":把数据集分为训练集和验证集,前者就是做上述伪代码的工作,即计算梯度,更新权重等;验证集用来估计误差(如分类任务中的分类准确率),当出现训练误差减小但验证误差提升时,停止训练,同时返回具有最小验证集误差的权重和阈值。
- 第二种是"正则化",在误差目标函数中加入一个描述网络复杂度的部分,通过对模型的复杂度进行惩罚(如限制模型的参数或权重的大小)来防止过拟合
深度学习
深度学习模型通过"增加隐层"的数目,提高训练效率,降低过拟合的风险。
以第二章的手写体识别为例,网络输入是一个32×32的手写数字图像,输出是算法的识别结果,过程以伪代码的形式呈现。
对所有手写数字文本
将加载的32×32矩阵转为一行1024的向量
把文本对应的数字转化为one-hot向量(某个值为1,其余均为0)
构建神经网络:设置网络的隐藏层数,各隐藏层神经元个数,激活函数学习率,优化方法,最大迭代次数
做测试
隐藏层中的神经元能直接影响网络的学习能力,但是如果数量过多容易导致出现过拟合现象,选取合适参数的方法有
- 手动筛选:给定一个范围,如:比较50,100,500的效果,如果200的效果优于其他两者,那么就从50到100间再选择一个数值,但这个方法有点慢
- 正则化技术:以L1正则化(L1 Regularization)为例:L1正则化通过在损失函数中添加参数的绝对值之和,来惩罚模型中的大参数。这导致一些参数变为零,从而实现特征选择和稀疏性。L1正则化可以促使模型更加稀疏,即只有少数参数对模型的预测起作用,其他参数趋近于零。
实验:比较隐藏层不同神经元个数的多层感知机的实验效果
(学习率均为0.0001,迭代次数为2000)
clf = MLPClassifier(hidden_layer_sizes=(100,),
activation='logistic', solver='adam',
learning_rate_init=0.0001, max_iter=2000)
print(clf)
变量为神经元个数,分别是50,100,500,1000
实验分析:神经元个数从50逐渐升到500个的过程中,网络对目标特征的抓取能力逐渐提升,所以识别的正确率随之提高。但在个数跳到1000时正确率没有提高,可能是因为个数在达到1000之前,多层感知机就已经收敛了,个数继续增加相当于时过度训练数据,提高网络复杂度,这并不会带来增益。能测试的变量还有迭代次数和学习率。