9.4 集成功率放大电路

news2024/11/25 20:28:20

OTL、OCL 和 BTL 电路均有各种不同输出功率和不同电压增益的集成电路。应当注意,在使用 OTL 电路时,需外接输出电容。为了改善频率特性,减小非线性失真,很多电路内部还引入深度负反馈。这里以低频功放为例。

一、集成功率放大电路的分析

1、LM386 内部电路

LM386 内部电路原理图如图9.4.1所示,与通用型集成运放相类似,它是一个三级放大电路,如点划线所划分。

在这里插入图片描述
第一级为差分放大电路, T 1 T_1 T1 T 3 T_3 T3 T 2 T_2 T2 T 4 T_4 T4 分别构成复合管,作为差分放大电路的放大管; T 5 T_5 T5 T 6 T_6 T6 组成的镜像电流源作为 T 1 T_1 T1 T 2 T_2 T2 的有源负载;信号从 T 3 T_3 T3 T 4 T_4 T4 管的基极输入,从 T 2 T_2 T2 管的集电极输出,为双端输入单端输出差分电路。镜像电流源作为差分放大电路有源负载,使单端输出电路的增益近似等于双端输出电路的增益。
第二级为共射放大电路, T 7 T_7 T7 为放大管,恒流源作为有源负载,以增大放大倍数。
第三级中的 T 8 T_8 T8 T 9 T_9 T9 管复合成 PNP 型管,与 NPN 型管 T 10 T_{10} T10 构成准互补输出级。二极管 D 1 D_1 D1 D 2 D_2 D2 为输出级提供合适的偏置电压,可以消除交越失真。
利用瞬时极性法可以判断出,引脚 2 为反相输入端,引脚 3 为同相输入端。电路由单电源供电,固为 OTL 电路。输出端(引脚 5 )应外接输出电容后再接负载。
电阻 R 7 R_7 R7 从输出端连接到 T 2 T_2 T2 的发射极,形成反馈通路,并与 R 5 R_5 R5 R 6 R_6 R6 构成反馈网络,从而引入了深度电压负反馈,使整个电路具有稳定的电压增益。
应当指出,在引脚 1 和 8(或者 1 和 5)外接电阻时,应只改变交流通路,所以必须在外接电阻回路中串联一个大容量电容,如图9.4.1中所示。外接不同阻值的电容式,电压放大倍数的调节范围为 20 ∼ 200 20\sim200 20200,即电压增益的调节范围为 26 ∼ 46   dB 26\sim46\,\textrm{dB} 2646dB

2、LM386 的引脚图

LM386 的外形和引脚的排列如图9.4.2所示。

在这里插入图片描述
引脚 2 为反相输入端,3 为同相输入端;引脚 5 为输出端;引脚 6 和 4 分别为电源和地;引脚 1 和 8 为电压增益设定端;使用时在引脚 7 和地之间接旁路电容,通常取 10   μF 10\,\textrm{μF} 10μF

二、集成功率放大电路的主要性能指标

集成功率放大电路的主要性能指标有最大输出功率、电源电压范围、电源静态电流、电压增益、频带宽、输入阻抗、输入偏置电流、总谐波失真等。
LM386 - 1 和 LM386 - 3 的电源电压为 4 ∼ 12   V 4\sim12\,\textrm V 412V,LM386 - 4 的电源电压为 5 ∼ 18   V 5\sim18\,\textrm V 518V。因此,对于同一负载,当电源电压不同时,最大输出功率的数值将不同;当然,对于同一电源电压,当负载不同时,最大输出功率的数值也将不同。已知电源的静态电流(可查阅手册)和负载电流最大值(通过最大输出功率和负载可求出),可求出电源的功耗,从而得到转换效率。
几种典型产品的性能如表9.4.1所示。 表 1   几种集成功放的主要参数 表1\, 几种集成功放的主要参数 1几种集成功放的主要参数

型号LM386 - 4LM2877TDA1514ATDA1556
电路类型OTLOTL(双通道)OCLBTL(双通道)
电源电压范围/V5.0 ~ 186.0 ~ 24±10 ~ ±306.0 ~ 18
静态电源电流/mA4255680
输入阻抗/kΩ501000120
输出功率/W1( V C C = 16   V V_{\scriptscriptstyle{CC}}=16 \,\textrm V VCC=16V R L = 32   Ω \\R_L=32\,Ω RL=32Ω4.548( V C C = ± 23   V V_{CC}=±23\,\textrm V VCC=±23V R L = 4   Ω \\R_L=4\,Ω RL=4Ω22( V C C = 14.4   V V_{CC}=14.4\,\textrm V VCC=14.4V R L = 4   Ω \\R_L=4\,Ω RL=4Ω
电压增益/dB26 ~ 4670(开环)   \, 89(开环)   \\\, 30(闭环)26(闭环)
频带宽/kHz300   \\\, (1,8开路)0.02 ~ 250.02 ~ 15
增益频带宽积/kHz65
总谐波失真/%(或 dB)0.2%0.07%-90 dB0.1%

表9.4.1中的电压增益均在信号频率为 1   kHz 1\,\textrm{kHz} 1kHz 条件下测试所得。应当指出,表中所示均为典型数据,使用时应进一步查阅手册,以便获得更确切的数据。

三、集成功率放大电路的应用

1、集成 OTL 电路的应用

图9.4.3所示为 LM386 的一种基本用法,也是外接元件最少的一种用法, C 1 C_1 C1 为输出电容。由于引脚 1 和 8 开路,集成功放的电压增益为 26 dB,即电压放大倍数为 20。利用 R w R_w Rw 可调节扬声器的音量。 R R R C 2 C_2 C2 串联构成校正网络用来进行相位补偿。

在这里插入图片描述
静态时输出电容上电压为 V C C / 2 V_{CC}/2 VCC/2,LM386 的最大不失真输出电压的峰 - 峰值约为电源电压 V C C V_{CC} VCC。设负载电阻为 R L R_L RL,最大输出功率表达式为 P o m ≈ ( V C C / 2 2 ) 2 R L = V C C 2 8 R L ( 9.4.1 ) P_{om}\approx\frac{\Big(\displaystyle\frac{V_{CC}/2}{\sqrt2}\Big)^2}{R_L}=\frac{V^2_{CC}}{8R_L}\kern 40pt(9.4.1) PomRL(2 VCC/2)2=8RLVCC2(9.4.1)此时的输入电压有效值的表达式为 U i m = V C C 2 / 2 A u ( 9.4.2 ) U_{im}=\frac{\displaystyle\frac{V_{CC}}{2}/\sqrt2}{A_u}\kern 40pt(9.4.2) Uim=Au2VCC/2 (9.4.2) V C C = 16   V V_{CC}=16\,\textrm V VCC=16V R L = 32   Ω R_L=32\,Ω RL=32Ω 时, P o m ≈ 1   W P_{om}\approx1\,\textrm W Pom1W U i m ≈ 283   mV U_{im}\approx283\,\textrm {mV} Uim283mV
图9.4.4所示为 LM386 电压增益最大时的用法, C 3 C_3 C3 使引脚 1 和 8 在交流通路中短路,使 A u ≈ 200 A_u\approx200 Au200 C 4 C_4 C4 为旁路电容; C 5 C_5 C5 为去耦电容,滤掉电源的高频交流成分。当 V C C = 16   V V_{CC}=16\,\textrm V VCC=16V R L = 32   Ω R_L=32\,\textrm Ω RL=32Ω 时,与图9.4.3所示电路相同, P o m P_{om} Pom 仍约为 1   W 1\,\textrm W 1W;但输入电压的有效值 U i m U_{im} Uim 却仅需 28.3   mV 28.3\,\textrm{mV} 28.3mV
在这里插入图片描述
图9.4.5所示为 LM386 的一般用法,图中利用 R 2 R_2 R2 改变 LM386 的电压增益。

在这里插入图片描述

2、集成 OCL 电路的应用

图9.4.6所示为 TDA1521 的基本用法。TDA1521 为 2 通道 OCL 电路,可作为立体声扩音机左右两个声道的功放。其内部引入了深度电压串联负反馈,闭环电压增益为 30 dB,并具有待机、净噪功能以及短路和过热保护等。

在这里插入图片描述
查阅手册可知,当 ± V C C = ± 16   V ±V_{CC}=±16\,\textrm V ±VCC=±16V R L = 8   Ω R_L=8\,\textrm Ω RL=8Ω 时,若要求总谐波失真为 0.5 % 0.5\% 0.5%,则 P o m ≈ 12   W P_{om}\approx12\,\textrm W Pom12W。由于最大输出功率的表达式为 P o m = U o m 2 R L P_{om}=\frac{U^2_{om}}{R_L} Pom=RLUom2可得最大不失真输出电压 U o m ≈ 9.8   V U_{om}\approx9.8\,\textrm V Uom9.8V,其峰值约为 13.9   V 13.9\,\textrm V 13.9V,可见功放内部压降的最小值约为 2.1   V 2.1\,\textrm V 2.1V。当输出功率为 $P_{om} $ 时,输入电压有效值 U i m ≈ 310   mV U_{im}\approx310\,\textrm {mV} Uim310mV

3、集成 BTL 电路的应用

TDA1556 为 2 通道 BTL 电路,与 TDA1521 相同,也可作为立体声扩音机左右两个声道的功放,图9.4.7所示为其基本用法,两个通道的组成完全相同。TDA1556内部具有待机、净噪功能,并有短路、电压反向、过电压、过热和扬声器保护等。

在这里插入图片描述
TDA1556 内部的每个放大电路的电压放大倍数均为10,当输入电压为 U i U_i Ui 时, A 1 A_1 A1 的净输入电压 U ˙ i 1 = U ˙ p 1 − U ˙ p 2 = U ˙ i \dot U_{i1}=\dot U_{p1}-\dot U_{p2}=\dot U_i U˙i1=U˙p1U˙p2=U˙i U ˙ o 1 = A ˙ u 1 U ˙ i \dot U_{o1}=\dot A_{u1}\dot U_{i} U˙o1=A˙u1U˙i A 2 A_2 A2 的净输入电压 U ˙ i 2 = U ˙ p 2 − U ˙ p 1 = − U ˙ i \dot U_{i2} = \dot U_{p2}-\dot U_{p1}=-\dot U_i U˙i2=U˙p2U˙p1=U˙i U ˙ o 2 = − A ˙ u 2 U ˙ i \dot U_{o2}=-\dot A_{u2}\dot U_i U˙o2=A˙u2U˙i;因此,电压放大倍数 A ˙ u = U ˙ o U ˙ i = U ˙ o 1 − U ˙ o 2 U ˙ i = A ˙ u 1 U ˙ i − ( − A ˙ u 2 U ˙ i ) U ˙ i = 2 A ˙ u 1 = 20 \dot A_u=\frac{\dot U_o}{\dot U_i}=\frac{\dot U_{o1}-\dot U_{o2}}{\dot U_i}=\frac{\dot A_{u1}\dot U_i-(-\dot A_{u2}\dot U_i)}{\dot U_i}=2\dot A_{u1}=20 A˙u=U˙iU˙o=U˙iU˙o1U˙o2=U˙iA˙u1U˙i(A˙u2U˙i)=2A˙u1=20电压增益 20 lg ⁡ ∣ A ˙ u ∣ ≈ 26   dB 20\lg|\dot A_u|\approx26\,\textrm{dB} 20lgA˙u26dB
为了使最大不失真输出电压的峰值接近电源电压 V C C V_{CC} VCC,应设置放大电路同相输入端和反相输入端的静态电位均为 V C C / 2 V_{CC}/2 VCC/2,输出端静态电位也为 V C C / 2 V_{CC}/2 VCC/2,因此内部提供的基准电压 U R E F U_{REF} UREF V C C / 2 V_{CC}/2 VCC/2。当 u i u_i ui 由零逐渐增大时, u O 1 u_{\scriptscriptstyle O1} uO1 V C C / 2 V_{CC}/2 VCC/2 逐渐增大, u O 2 u_{\scriptscriptstyle O2} uO2 V C C / 2 V_{CC}/2 VCC/2 逐渐减小;当 u i u_i ui 增大到峰值时, u O 1 u_{\scriptscriptstyle O1} uO1 达到最大值, u O 2 u_{\scriptscriptstyle O2} uO2 达到最小值,负载上电压可接近 + V C C +V_{CC} +VCC。同理,当 u i u_i ui 由零逐渐减小时, u O 1 u_{\scriptscriptstyle O1} uO1 u O 2 u_{\scriptscriptstyle O2} uO2 的变化与上述过程相反;当 u i u_i ui 减小到负峰值时, u O 1 u_{\scriptscriptstyle O1} uO1 达到最小值, u O 2 u_{\scriptscriptstyle O2} uO2 达到最大值,负载上电压可接近 − V C C -V_{CC} VCC。因此,最大不失真输出电压的峰值可接近电源电压 V C C V_{CC} VCC
查阅手册可知,当 V C C = 14.4   V V_{CC}=14.4\,\textrm V VCC=14.4V R L = 4   Ω R_L=4\,\textrm Ω RL=4Ω 时,若总谐波失真为 0.1 % 0.1\% 0.1%,则 P O M ≈ 22   W P_{OM}\approx22\,\textrm W POM22W。最大不失真输出电压 U o m ≈ 9.38   V U_{om}\approx9.38\,\textrm V Uom9.38V,其峰值约为 13.3   V 13.3\,\textrm V 13.3V,因而内部放大电路压降的最小值约为 1.1   V 1.1\,\textrm V 1.1V。为了减小非线性失真,应增大内部放大电路压降的最小值,当然势必减小电路的最大输出功率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/941237.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue项目,如何修改Element-Plus等UI组件库的样式,三种方式搞定!!!

前言 我们在学习和使用组件库构建页面的时候,时常会遇到这样的问题。 即,尽管组件库已经提供了较多的功能,来帮助我们构建自定义的效果,但有时仍不能使我们满意。 这个时候我们就不得不修改UI库的样式,来达到想要的状…

修改类属性后出现错误 Filtered request failed. 和 unable to find class for code 253

问题描述: 类增加字段后项目无法启动。 javax.servlet.ServletException: Filtered request failed. Caused by: java.lang.RuntimeException: unable to find class for code 253 原因分析: 由于修改的User类是设置了序列化的,在未修改…

RISC-V 中国峰会 | OpenMPL引人注目,RISC-V Summit China 2023圆满落幕

RISC-V中国峰会圆满落幕 2023年8月25日,为期三天的RISC-V中国峰会(RISC-V Summit China 2023)圆满落幕。本届峰会以“RISC-V生态共建”为主题,结合当下全球新形势,把握全球新时机,呈现RISC-V全球新观点、新…

【C语言进阶(8)】自定义数据类型1:结构体

文章目录 前言Ⅰ 结构体的声明和定义⒈结构体声明⒉结构体定义⒊特殊的声明 Ⅱ 结构体的自引用Ⅲ 结构体初始化Ⅳ 访问结构体成员Ⅴ 结构体内存对齐⒈结构体内存对齐规则⒉分析结构体大小⒊嵌套结构体内存大小⒋内存对齐存在的原因 Ⅵ 修改默认对齐数Ⅶ 结构体传参 前言 C 语言…

嵌入式系统存储体系

一、存储系统概述 主要分为三种:高速缓存(cache)、主存和外存。 二、高速缓存Cache 高速缓冲存储器中存放的是当前使用得最多得程序代码和数据,即主存中部分内容的副本,其本身无自己的地址空间。在嵌入式系统中Cac…

视频怎么变成动态gif图?一个方法轻松转换

怎么将视频转换成gif动态图片呢?大家在日常看电影、电视剧,刷短视频的时候想要将其做成gif表情包时,应该如何操作呢?这时候,给大家分享一款操作简单无需下载的视频gif转换(https://www.gif.cn/)…

ubuntu22安装和部署Kettle8.2

前提 kettle是纯java编写的etl开源工具,目前kettle7和kettle8都需要java8或者以上才能正常运行。所以运行kettle前先检查java环境是否正确配置,java版本是否是8或者以上。 kettle安装 1、创建kettle目录,并将kettle的zip包解压到kettle目…

Linux 系统运维工具之 OpenLMI

一、前要 OpenLMI(全称 Open Linux Management Infrastructure)即开放式的 Linux 管理基础架构。OpenLMI 是一个开源项目,用于管理 Linux 系统管理的通用基础架构。它建立在现有工具基础上,充当抽象层,以便向系统管理…

CTF-XXE(持续更新,欢迎分享更多相关知识点的题目)

知识 实例 BUU [PHP]XXE 进来看到 然后一起看 Write BUU XXE COURSE 1 进来看到 一起看 write NSS [NCTF2019]Fake XML cookbook 反正是XXE 直接整 write [NCTF 2019]True XML cookbook 不整花里胡哨,解题在最下面 write 与博主不同,我通过…

【C++多线程】C++11互斥锁和条件变量实现生产者消费者模型

先看几个问题,第三个问题可以先看代码然后再理解 Q1:临界区在哪 A1: 队列中元素在「生产者生产(push)」和「消费者消费(pop)」时就是临界区 Q2:同步操作在哪 A2: 很显然,队列只有…

在kaggle中用GPU使用CGAN生成指定mnist手写数字

文章目录 1项目介绍2参考文章3代码的实现过程及对代码的详细解析独热编码定义生成器定义判别器打印我们的引导信息模型训练迭代过程中生成的图片损失函数的变化 4总结5 模型相关的文件 1项目介绍 在GAN的基础上进行有条件的引导生成图片cgan 2参考文章 GAN实战之Pytorch 使用…

android framework之Applicataion启动流程分析

Application启动流程分析 启动方式一:通过Launcher启动app 启动方式二:在某一个app里启动第二个app的Activity. 以上两种方式均可触发app进程的启动。但无论哪种方式,最终通过通过调用AMS的startActivity()来启动application的。 根据上图…

家政服务行业搭建小程序的实用技巧分享

随着移动互联网的发展,小程序成为了各行各业的新宠。对于家政服务行业来说,搭建一个小程序商城可以极大地提升服务的便捷性和用户体验,同时也能提高企业的竞争力。本文将分享家政服务行业搭建小程序的实用技巧,帮助您顺利创建属于…

利用深度蛋白质序列嵌入方法通过 Siamese neural network 对 virus-host PPIs 进行精准预测【Patterns,2022】

研究背景: 病毒感染可以导致多种组织特异性损伤,所以 virus-host PPIs 的预测有助于新的治疗方法的研究;目前已有的一些 virus-host PPIs 鉴定或预测方法效果有限(传统实验方法费时费力、计算方法要么基于蛋白结构或基因&#xff…

SAP-FI-会计凭字段替代OBBH

会计凭证替代OBBH 业务:文本必须等于某个字段的值,例如凭证日期 关闭确认功能,输入OBBH 双击“替代”进入功能配置,或者用GGB1,用GGB1的功能更多。 点击行项目,点击“新建替换”保存 点击新建YXL7331,点击…

删除命名空间一直处于Terminating

删除命名空间一直处于Terminating 通常删除命名空间或者其他资源一直处于Terminating状态,是由于资源调度到的节点处于NotReady状态,需要将节点重新加入到集群使其状态变为Ready状态才能解决问题,当node重新加入处于Ready状态后,…

系统报错msvcr120.dll丢失一键修复教程,快速修复dll报错问题

今天,我将和大家探讨一个常见的问题:系统报错msvcr120.dll丢失。这个问题相信很多网友都遇到过,尤其是在使用一些较老的软件或者游戏时,很容易出现这个错误。那么,如何解决这个问题呢?下面,我将…

Matlab(结构化程式和自定义函数)

目录 1.脚本编辑器 2.脚本流 2.1 控制流 2.2 关系(逻辑)操作符 3.脚本与函数 1.脚本编辑器 Matlab的命名规则: 常用功能: 智能缩进: 在写代码的时候,有的时候代码看起来并不是那么美观(可读性…

在线查询让家长迅速获得录取通知书

发布录取通知书是一项看似简单却非常耗时费力的工作。负责录取工作的老师通常会采取以下常见的发放方式: 1. 面试告知:某些学校会在面试结束后立即告知学生是否被录取。这种方式通常适用于面试人数较少的学校或特定专业。 2. 电子邮件:学校通…

pytorch中torch.gather()简单理解

1.作用 从输入张量中按照指定维度进行索引采集操作,返回值是一个新的张量,形状与 index 张量相同,根据指定的索引从输入张量中采集对应的元素。 2.问题 该函数的主要问题主要在dim维度上,dim0 表示沿着第一个维度(行…