利用深度蛋白质序列嵌入方法通过 Siamese neural network 对 virus-host PPIs 进行精准预测【Patterns,2022】

news2024/11/25 21:51:29

在这里插入图片描述

研究背景:

  1. 病毒感染可以导致多种组织特异性损伤,所以 virus-host PPIs 的预测有助于新的治疗方法的研究;
  2. 目前已有的一些 virus-host PPIs 鉴定或预测方法效果有限(传统实验方法费时费力、计算方法要么基于蛋白结构或基因,要么基于手动特征工程的机器学习);
  3. DL在PPIs预测中的应用愈加广泛,包括特征嵌入、autoencoder、LSTM等,而最近几年基于NLP领域的一些基于迁移学习的方法、基于 transformer 的预训练模型的应用等在 PPIs 预测中展现了更好的表现;
  4. 本文中,作者提出了一个基于 ProtBERT 模型的深度学习方法,名为 STEP(据作者所知,这是第一个用预训练 transformer 模型获取序列嵌入特征用于 PPIs 预测的方法);

数据集构成:

在这里插入图片描述

数据集构成
Tsukiyama22,383 positive PPIs (5,882 human proteins & 996 virus proteins)
Guo5943 positive PPIs
Sun36,545 positive PPIs, 36,323 negative PPIs
  1. Tsukiyama 的数据集是 human-virus PPIs,正负样本数目比为1:10,负样本构造方法是:dissimilarity-based negative sampling method。此外,将整个数据集中的20%取出作为独立的验证集 (independent test data);
  2. Guo 的数据集是 Yeast PPIs,其中负样本PPIs的数目和正样本PPIs一样,构建方法有三种:1). 正样本蛋白随机组对;2). 不同亚细胞定位的蛋白进行组对;3). 利用人为构造(将已有蛋白的序列进行打乱)的蛋白序列进行组对;
  3. Sun 的数据集是 Human PPIs,从 HPRD 数据库中整理得到的,负样本构建方法是 “不同亚细胞定位随机组对” 和 “Negatome database 中的非互作蛋白”;

研究思路和方法:

在这里插入图片描述
代码:https://github.com/SCAI-BIO/STEP
从示意图中可以看出,STEP方法的整体结构是很简单的,所以根据上述示意图对主要代码进行简述(代码主要来自src/modeling/ProtBertPPIModel.py):

1. __single_step()方法从宏观上规定了STEP运行过程:

在这里插入图片描述

上面截图为ProtBertPPIModel.py的314行-327行,这段代码规定了STEP的运行顺序,其中我觉得比较重要的点我用红线标了出来:

  1. 该段代码定义了一个__single_step(self, batch)的方法,其输入是batch,根据315行可以确定batch是由inputs_A, input_B, targets三部分构成的。
  2. 之后的316和317行表示将 inputs_Ainputs_B输入到self.forward()方法中得到model_out_Amodel_out_B,从这一步可以推测出inputs_A是由input_ids, token_type_ids, attention_mask构成。
  3. self.forward()的输出作为下一步self.classifier()方法的输入,之后得到classifier_output(即预测输出),之后再利用self.loss_bce_with_integrated_sigmoid()方法计算损失,最终__signle_step()方法返回(loss, trues, preds)(即损失值、真实标签和预测值)。

self.forward()方法定义了ProtBERT模型如何对输入的蛋白序列进行编码的:

在这里插入图片描述

首先蛋白A和蛋白B的序列由氨基酸构成的字符串,不能直接输入到神经网络中进行训练,需要将需要将字符串映射为数值型数据。这一步就是干这个事的,也就是用预训练的ProtBERT模型将蛋白质序列进行向量化表示。

  1. input_ids, token_type_ids, attention_mask 输入self.ProtBertBFD()方法之后得到word_embeddings,之后通过self.pool_strategy()方法对word_embedding进行池化操作,而这个self.pool_strategy()(如下图所示),这里的features指的就是{"token_embeddings": word_embeddings, "cls_token_embeddings": word_embeddings[:, 0], "attention_mask": attention_mask},而self.pool_strategy()的输出output_vectors则计算了三种情况下的池化结果。

在这里插入图片描述

  1. 这里存在的疑问是input_ids, token_type_ids, attention_mask究竟指的是什么?
    根据 src/data/VirHostNetDataset.py 中(下图所示)可以看出,input_ids, token_type_ids, attention_mask是由self.tokenizer()方法得到的,而self.tokenizer()方法指的是预训练模型Roslab/prot_bert_bfd中的tokenizer,这三个数据可以从tokenizer中得到(可见 https://huggingface.co/Rostlab/prot_bert_bfd)。

在这里插入图片描述

self.ProtBertBFD()加载预训练PortBERT模型:

在这里插入图片描述

正如上面所述,预训练模型ProtBERT可以直接从 hugging face 上下载得到,通过BertModel.from_pretrained()方法进行加载即可(红框所注部分)。

self.classifier()对蛋白A和蛋白B特征进行哈达玛积,并进行预测分类:

在这里插入图片描述

将通过self.forward()方法得到的蛋白A和蛋白B的特征进行哈达玛积,并将结果输入到self.classification_head()方法中即可得到预测结果(其中self.classification_head()方法在上面的__build_model()方法中)。

大概情况就是这样(有错之处,还请指出,及时更改),其他细节详见代码。


实验结果及讨论:

1. Comparative evaluation of STEP with state-of-the-art work:

方法特征+模型
Tsukiyama (2021)word2vec sequence embedding + LSTM-PHV Siamese model (5-fold-cv)
Yang (2019)doc2vec + RF classifier
Guo (2008)auto covariance + SVM (5-fold-cv)
Sun (2017)AC + CT + autoencoder (10-fold-cv)
Chen (2019)Siamese residual RCNN (5-fold-cv)
STEP (2022)ProtBERT + Siamese Neural Network

1.1 PPIs 预测任务上各方法的预测表现:

在这里插入图片描述

1.2 在 PPIs 互作类型和结合亲和力任务上,各方法的预测表现:

  1. PPIs 互作类型预测:
       数据集:SHS27k dataset(由Chen对STRING数据库整理得到),包括 26,944 PPIs,涉及7种互作类型: activation (16.70%), binding (16.70%), catalysis (16.70%), expression (5.84%), inhibition (16.70%), post-translational modification (ptmod; 10.66%), and reaction (16.70%)。
  2. PPIs 结合亲和力预测:
       数据来自 SKEMPI 数据库,包括 2,792 突变蛋白复合物的结合亲和力(参考Chen的方法对数据集进行了处理)。
  3. 模型修改:
       1). 对于PPIs预测任务(多分类任务),将 bottleneck classification head 替换为三个一样的线性层(dropout和ReLU不变),将损失函数换成 cross-entropy,sigmoid 激活函数换成 Softmax。
       2). 对于PPIs 结合亲和力预测(回归问题),将损失函数替换成 mean squared error loss,并将预测值缩放到0-1之间。
  4. 做10-fold-cross validation。

在这里插入图片描述

1.3 结论1:

  1. Table1 demonstrated at least state-of-the-art performance of STEP.
  2. STEP compared on exactly the same data published by Tsukiyama performs similar to their LSTM-PHV method and better than the approach by Yang.
  3. TableS4, we also evaluated our STEP architecture on two additional tasks, namely, PPI type prediction and a PPI binding affinity estimation using the data and the CV setup provided by Chen. For both tasks, we reached at least state-of-the-art per- formances with our approach.

2. Prediction of JCV major capsid protein VP1 interactions:

  1. We split the brain tissue-specific interactome dataset including all positive and pseudo-negative interactions into training (60%), validation (20%), and test (20%) datasets.
  2. After tuning on the validation set, we used our best model to make predictions on the hold-out test set.
  3. 之所以用 brain tissue-specific interactome 的数据,是因为 JCV 可以透过血脑屏障入脑。

2.1 超参数优化(模型微调):

在这里插入图片描述

2.2 STEP-Brain对于脑组织特异性互作蛋白的预测表现:

在这里插入图片描述

2.3 STEP-Brain对于JCV major capsid protein VP1 互作蛋白的预测结果(top10):

We used this STEP-brain model to predict interactions of the JCV major capsid protein VP1 with all human receptors.

在这里插入图片描述

2.4 JCV major capsid protein VP1 被预测的互作蛋白富集分析结果:

在这里插入图片描述

Altogether, we observed a strong enrichment of VP1 interactions predicted with olfactory, serotonin, amine, taste, and acetylcholine receptors.

3. Prediction of SARS-CoV-2 spike glycoprotein interactions:

3.1 训练思路:

We performed a nested CV procedure on the given SARS-CoV-2 interactions dataset. We used five outer and five inner loops to validate the generalization performance and while performing the hyperparameter optimization in the inner loop. In each outer run, we created a stratified split of the interactome into train (4/5) and test (1/5) datasets. In the nested run, we further split the outer train dataset into train (1/5) and validation (1/5) datasets, which were used to optimize the hyperparameters of the model using the respective training data.

关于 Nested Cross Validation 的示意图(图片来自网络):
在这里插入图片描述

3.2 超参数优化:

在这里插入图片描述

3.3 STEP-virus-host model 的 Nested CV 测试结果:

在这里插入图片描述
在这里插入图片描述

3.4 STEP-virus-host model 预测SARS-CoV-2 spike 蛋白的人类受体结果:

STEP-virus-host model obtained from the best outer fold to predict interactions of the SARS-CoV-2 spike pro- tein (alpha, delta, and omicron variants) with all human receptors that were not already contained in VirHostNet.
在这里插入图片描述

  1. For all virus variants the sigma intracellular receptor 2 (GeneCards:TMEM97; UniProt:Q5BJF2) was the only one predicted with an outstanding high probability (of >70% in all cases).
  2. The sigma 1 and 2 receptors are thought to play a role in regulating cell survival, morphology, and differentiation.
  3. In addition, the sigma receptors have been proposed to be involved in the neuronal transmission of SARS- CoV-2. They have been suggested as targets for therapeutic intervention.
  4. Our results suggest that the antiviral effect observed in cell lines treated with sigma receptor binding ligands might be due to a modulated binding of the spike protein, thus inhibiting virus entry into cells.

4. 讨论:

  1. 利用预训练ProtBERT和Siamese neural network架构仅根据蛋白质以及序列来预测 PPIs,结果表明该方法(STEP)比之前的基于LSTM等原理的方法效果更优;
  2. 通过将STEP进行超参数优化得到的模型可以很好地预测脑组织特异性PPIs以及virus-host PPIs的预测;
  3. 微调的模型 STEP-Brain 和 STEP-virus-host 可分别用于预测 JCV major capsid protein VP1 互作蛋白以及 SARS-CoV-2 spike glycoprotein 互作受体;
  4. 作者首次提出将预训练大模型用于PPIs预测,意义还是很重大的。但是整体上来看,尽管模型比较简单,但是对计算资源的要求很高,(每一次微调需要 2xA100GPU with VMEM of 32GB,尽管可以并行,但是微调116次,作者用了10days的时间)
    【本文章给我的启发就是,没有足够的计算资源,大模型还是不要搞得好😮‍💨】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/941205.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SAP-FI-会计凭字段替代OBBH

会计凭证替代OBBH 业务:文本必须等于某个字段的值,例如凭证日期 关闭确认功能,输入OBBH 双击“替代”进入功能配置,或者用GGB1,用GGB1的功能更多。 点击行项目,点击“新建替换”保存 点击新建YXL7331,点击…

删除命名空间一直处于Terminating

删除命名空间一直处于Terminating 通常删除命名空间或者其他资源一直处于Terminating状态,是由于资源调度到的节点处于NotReady状态,需要将节点重新加入到集群使其状态变为Ready状态才能解决问题,当node重新加入处于Ready状态后,…

系统报错msvcr120.dll丢失一键修复教程,快速修复dll报错问题

今天,我将和大家探讨一个常见的问题:系统报错msvcr120.dll丢失。这个问题相信很多网友都遇到过,尤其是在使用一些较老的软件或者游戏时,很容易出现这个错误。那么,如何解决这个问题呢?下面,我将…

Matlab(结构化程式和自定义函数)

目录 1.脚本编辑器 2.脚本流 2.1 控制流 2.2 关系(逻辑)操作符 3.脚本与函数 1.脚本编辑器 Matlab的命名规则: 常用功能: 智能缩进: 在写代码的时候,有的时候代码看起来并不是那么美观(可读性…

在线查询让家长迅速获得录取通知书

发布录取通知书是一项看似简单却非常耗时费力的工作。负责录取工作的老师通常会采取以下常见的发放方式: 1. 面试告知:某些学校会在面试结束后立即告知学生是否被录取。这种方式通常适用于面试人数较少的学校或特定专业。 2. 电子邮件:学校通…

pytorch中torch.gather()简单理解

1.作用 从输入张量中按照指定维度进行索引采集操作,返回值是一个新的张量,形状与 index 张量相同,根据指定的索引从输入张量中采集对应的元素。 2.问题 该函数的主要问题主要在dim维度上,dim0 表示沿着第一个维度(行…

P21~22 第六章 储能元件——电容存储电场能,电感存储磁场能

1、电容元件 a定义 b线性时不变电容元件 c电容的电压与电流关系 i有限则u有限 注意理解面积 d电容的功率和储能 e例一 跃变就是指物体的物理量从有限值变为无限值的过程。 分析上图例题:对于电源波形要吃负无穷到正无穷去刻画。即时间轴要铺满。 有有图控制电…

Mysql001:Mysql概述以及安装

前言:本课程将从头学习Mysql,以我的工作经验来说,sql语句真的太重要的,现在互联网所有的一切都是建立在数据上,因为互联网的兴起,现在的数据日月增多,每年都以翻倍的形式增长,对于数…

服务器数据库中了locked勒索病毒怎么办,locked勒索病毒恢复工具

最近一段时间网络上的locked勒索病毒非常嚣张,自从6月份以来,很多企业的计算机服务器数据库遭到了locked勒索病毒的攻击,起初locked勒索病毒攻击用友畅捷通T用户,后来七月份开始攻击金蝶云星空客户,导致企业的财务系统…

【数学建模】清风数模正课4 拟合算法

拟合算法 在插值算法中,我们得到的曲线一定是要经过所有的函数点的;而用拟合所得到的曲线则不一样,拟合问题中,不需要得到的曲线一定经过给定的点。 拟合的目的是寻求一个函数曲线,使得该曲线在某种准则下与所有的数…

AcWing 898. 数字三角形 (每日一题)

大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 注意 像数组下标出现i-1的,在循环的时候从i1开始。 关于0x3f3f3f3f和Integer.MAX_VALUE 0x3f3f3f3f:1061109567 Integer.MAX_VALUE:2147483647 在选用Integ…

云计算在大数据分析中的应用与优势

文章目录 云计算在大数据分析中的应用云计算在大数据分析中的优势云计算在大数据分析中的示例未来发展和拓展结论 🎉欢迎来到AIGC人工智能专栏~云计算在大数据分析中的应用与优势 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博客&…

Bootstrap 源代码目录结构一览

目录 前言 Bootstrap 目录结构 Bootstrap 内容简介 Bootstrap 编译文件 CSS文件 | CSS 文件功能对比与清单 JS文件 | JS 文件功能对比与清单 Bootstrap 源码码目录 | 资源清单 前言 Bootstrap是Twitter推出的一个用于前端开发的开源工具包。它由Twitter的设计师Mark Ot…

续1-续3《你的医书是假的!批评付施威的《DDD诊所——聚合过大综合症》

DDD领域驱动设计批评文集 “软件方法建模师”不再考查基础题 《软件方法》各章合集 我写了一篇文章,批评付施威的《DDD诊所——聚合过大综合症》(以下简称《DDD诊所》),文章是《你的医书是假的!批评付施威的《DDD诊…

【JAVA】什么是异常

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈Java 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 异常 1. 什么是异常1.1 概念1.2 异常的体…

第五章 树与二叉树 三、二叉树的先、中、后序遍历

一、定义 树的遍历是按照一定的顺序访问树的所有节点,常用的遍历方式有三种:先序遍历、中序遍历和后序遍历。 先序遍历:从根节点开始,按照根节点-左子树-右子树的顺序遍历整棵树,即先访问根节点,然后遍历左…

找不到mfc100u.dll,无法继续执行如何修复呢?分享三个解决方法

我想和大家分享一个常见的电脑问题:找不到mfc100u.dll,无法继续执行。这个问题可能会给我们带来很多不便,但是请不要担心,我将为大家介绍五个解决方法,帮助大家轻松修复这个问题。 mfc100u.dll是Microsoft Foundation Class (MFC)…

Python爬虫实战案例——第三例

文章中所有内容仅供学习交流使用,不用于其他任何目的!严禁将文中内容用于任何商业与非法用途,由此产生的一切后果与作者无关。若有侵权,请联系删除。 起点中文网月票榜加密字体处理 字体加密的原理:就是将一种特定的…

8.28 菱形继承 虚继承 多态 模板

#include <iostream>using namespace std;class Animal { public:Animal() {cout << "111" <<endl;}virtual void perform() 0; };class Dol:public Animal { public:Dol() {}void perform(){cout << "海豚" << endl;} };c…