计算机视觉-LeNet

news2024/11/26 4:47:27

目录

LeNet

LeNet在手写数字识别上的应用

LeNet在眼疾识别数据集iChallenge-PM上的应用


LeNet

LeNet是最早的卷积神经网络之一。1998年,Yann LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。LeNet通过连续使用卷积和池化层的组合提取图像特征,其架构如 图1 所示,这里展示的是用于MNIST手写体数字识别任务中的LeNet-5模型:
 


图1:LeNet模型网络结构示意图


 

  • 第一模块:包含5×5的6通道卷积和2×2的池化。卷积提取图像中包含的特征模式(激活函数使用Sigmoid),图像尺寸从28减小到24。经过池化层可以降低输出特征图对空间位置的敏感性,图像尺寸减到12。

  • 第二模块:和第一模块尺寸相同,通道数由6增加为16。卷积操作使图像尺寸减小到8,经过池化后变成4。

  • 第三模块:包含4×4的120通道卷积。卷积之后的图像尺寸减小到1,但是通道数增加为120。将经过第3次卷积提取到的特征图输入到全连接层。第一个全连接层的输出神经元的个数是64,第二个全连接层的输出神经元个数是分类标签的类别数,对于手写数字识别的类别数是10。然后使用Softmax激活函数即可计算出每个类别的预测概率。


【提示】:

卷积层的输出特征图如何当作全连接层的输入使用呢?

卷积层的输出数据格式是[N,C,H,W][N, C, H, W][N,C,H,W],在输入全连接层的时候,会自动将数据拉平,

也就是对每个样本,自动将其转化为长度为KKK的向量,


LeNet在手写数字识别上的应用

LeNet网络的实现代码如下:

# 导入需要的包
import paddle
import numpy as np
from paddle.nn import Conv2D, MaxPool2D, Linear

## 组网
import paddle.nn.functional as F

# 定义 LeNet 网络结构
class LeNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(LeNet, self).__init__()
        # 创建卷积和池化层
        # 创建第1个卷积层
        self.conv1 = Conv2D(in_channels=1, out_channels=6, kernel_size=5)
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        # 尺寸的逻辑:池化层未改变通道数;当前通道数为6
        # 创建第2个卷积层
        self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        # 创建第3个卷积层
        self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)
        # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]
        # 输入size是[28,28],经过三次卷积和两次池化之后,C*H*W等于120
        self.fc1 = Linear(in_features=120, out_features=64)
        # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数
        self.fc2 = Linear(in_features=64, out_features=num_classes)
    # 网络的前向计算过程
    def forward(self, x):
        x = self.conv1(x)
        # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
        x = F.sigmoid(x)
        x = self.max_pool1(x)
        x = F.sigmoid(x)
        x = self.conv2(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]
        x = paddle.reshape(x, [x.shape[0], -1])
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        return x

飞桨会根据实际图像数据的尺寸和卷积核参数自动推断中间层数据的W和H等,只需要用户表达通道数即可。下面的程序使用随机数作为输入,查看经过LeNet-5的每一层作用之后,输出数据的形状。

# 输入数据形状是 [N, 1, H, W]
# 这里用np.random创建一个随机数组作为输入数据
x = np.random.randn(*[3,1,28,28])
x = x.astype('float32')

# 创建LeNet类的实例,指定模型名称和分类的类别数目
model = LeNet(num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,
# 查看LeNet中所包含的子层
print(model.sublayers())
x = paddle.to_tensor(x)
for item in model.sublayers():
    # item是LeNet类中的一个子层
    # 查看经过子层之后的输出数据形状
    try:
        x = item(x)
    except:
        x = paddle.reshape(x, [x.shape[0], -1])
        x = item(x)
    if len(item.parameters())==2:
        # 查看卷积和全连接层的数据和参数的形状,
        # 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
        print(item.full_name(), x.shape, item.parameters()[0].shape, item.parameters()[1].shape)
    else:
        # 池化层没有参数
        print(item.full_name(), x.shape)

卷积Conv2D的padding参数默认为0,stride参数默认为1,当输入形状为[Bx1x28x28]时,B是batch_size,经过第一层卷积(kernel_size=5, out_channels=6)和maxpool之后,得到形状为[Bx6x12x12]的特征图;经过第二层卷积(kernel_size=5, out_channels=16)和maxpool之后,得到形状为[Bx16x4x4]的特征图;经过第三层卷积(out_channels=120, kernel_size=4)之后,得到形状为[Bx120x1x1]的特征图,在FC层计算之前,将输入特征从卷积得到的四维特征reshape到格式为[B, 120x1x1]的特征,这也是LeNet中第一层全连接层输入shape为120的原因。

# -*- coding: utf-8 -*-
# LeNet 识别手写数字
import os
import random
import paddle
import numpy as np
import paddle
from paddle.vision.transforms import ToTensor
from paddle.vision.datasets import MNIST

# 定义训练过程
def train(model, opt, train_loader, valid_loader):
    # 开启0号GPU训练
    use_gpu = True
    paddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')
    print('start training ... ')
    model.train()
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            img = data[0]
            label = data[1] 
            # 计算模型输出
            logits = model(img)
            # 计算损失函数
            loss_func = paddle.nn.CrossEntropyLoss(reduction='none')
            loss = loss_func(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 2000 == 0:
                print("epoch: {}, batch_id: {}, loss is: {:.4f}".format(epoch, batch_id, float(avg_loss.numpy())))
            avg_loss.backward()
            opt.step()
            opt.clear_grad()

        model.eval()
        accuracies = []
        losses = []
        for batch_id, data in enumerate(valid_loader()):
            img = data[0]
            label = data[1] 
            # 计算模型输出
            logits = model(img)
            pred = F.softmax(logits)
            # 计算损失函数
            loss_func = paddle.nn.CrossEntropyLoss(reduction='none')
            loss = loss_func(logits, label)
            acc = paddle.metric.accuracy(pred, label)
            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

    # 保存模型参数
    paddle.save(model.state_dict(), 'mnist.pdparams')


# 创建模型
model = LeNet(num_classes=10)
# 设置迭代轮数
EPOCH_NUM = 5
# 设置优化器为Momentum,学习率为0.001
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())
# 定义数据读取器
train_loader = paddle.io.DataLoader(MNIST(mode='train', transform=ToTensor()), batch_size=10, shuffle=True)
valid_loader = paddle.io.DataLoader(MNIST(mode='test', transform=ToTensor()), batch_size=10)
# 启动训练过程
train(model, opt, train_loader, valid_loader)

通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。那么对于其它数据集效果如何呢?我们通过眼疾识别数据集iChallenge-PM验证一下。

LeNet在眼疾识别数据集iChallenge-PM上的应用

iChallenge-PM是百度大脑和中山大学中山眼科中心联合举办的iChallenge比赛中,提供的关于病理性近视(Pathologic Myopia,PM)的医疗类数据集,包含1200个受试者的眼底视网膜图片,训练、验证和测试数据集各400张。下面我们详细介绍LeNet在iChallenge-PM上的训练过程。


说明:

如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近视会拉长眼睛的光轴,也可能引起视网膜或者络网膜的病变。随着近视度数的不断加深,高度近视有可能引发病理性病变,这将会导致以下几种症状:视网膜或者络网膜发生退化、视盘区域萎缩、漆裂样纹损害、Fuchs斑等。因此,及早发现近视患者眼睛的病变并采取治疗,显得非常重要。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/941092.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux各类性能分析工具用法详解

文章目录 静态性能分析工具文件系统观测工具虚拟文件系统(VFS)分析工具磁盘管理工具进程资源占用监测系统库调用分析工具网络配置防火墙配置多路径配置进程调度系统命令操作查看硬件信息磁盘管理网络端口硬件信息 监测工具内核调用监测系统调用监测系统函数调用监测系统性能监测…

【VRTK4.0运动专题】轴移动AxisMove(真实身体的移动)

文章目录 1、概览2、释义3、属性设置 1、概览 2、释义 “竖直轴”控制的行为“水平轴”控制的行为1Vertical-Slide 滑动Horizontal-Slide 滑动2Vertical-Slide 滑动Horizontal-SmoothRotate 转动3Vertical-Slide 滑动Horizontal-SnapRotate 转动(不连续&#xff09…

PDF制作成翻页电子书

在日常工作中,大部分人使用的都是PDF文档发送给客户,但是PDF文档通常是静态的,缺乏交互性和视觉吸引力。那你有没有想过把它转换成翻页的电子书呢? 小编将告诉你操作步骤,非常简单 1.搜索FLBOOK在线制作电子杂志平台 …

零基础搭建个人影音媒体平台,实现远程访问Jellyfin播放器的简易方法

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及,各种各样的使用需求也被开发出来&…

静态树提升对Vue生态系统的影响和发展

文章目录 1. 了解Vue 3的静态树提升介绍Vue 3的基本概念和优势解释静态树提升的作用和目标 2. 什么是静态树?解释静态树的概念和特点比较静态树和动态树的区别 3. Vue 3中的静态树提升解释Vue 3中静态树提升的原理和工作方式强调静态树提升对性能的影响和优化效果 4…

【Vue3】transition 组件

1. 基础用法 <template><div class"content"><button click"flag !flag">switch</button><transition name"fade"><div v-if"flag" class"box"></div></transition><…

javacv基础04-图像色彩空间转换函数Imgproc.cvtColor()(彩图转灰度图示例)

opencv python 实现方式参考 opencv-19 图像色彩空间转换函数cv2.cvtColor() javacv 中的函数 Imgproc.cvtColor(image, grey, Imgproc.COLOR_BGR2GRAY); 参数说明&#xff1a; image: 原始图像新灰度图转换参数&#xff1a;多种转换方式参考上面链接地址内容 javacv 实现方式…

K8s的Pod出现Init:ImagePullBackOff问题的解决(以calico为例)

对于这类问题的解决思路应该都差不多&#xff0c;本文以calico插件安装为例&#xff0c;发现有个Pod的镜像没有pull成功 第一步&#xff1a;查看这个pod的描述信息 kubectl describe pod calico-node-wmhrw -n kube-system 从上图发现是docker拉取"calico/cni:v3.15.1&q…

鸿蒙是一个怎么样的操作系统,真的是安卓套壳吗?

从鸿蒙项目正式推出以来&#xff0c;就一直有各自声音&#xff0c;有看好的&#xff0c;认为鸿蒙的出现将会成为一个智能终端设备操作系统的框架和平台&#xff0c;促进万物互联产业的繁荣发展&#xff1b;也有的人在唱衰&#xff0c;觉得鸿蒙发展不起来&#xff0c;甚至认为鸿…

rknn_toolkit以及rknpu环境搭建-rv1126

rknn_toolkit安装------------------------------------------------------------------------------- 环境要求&#xff1a;ubutu18.04 建议使用docker镜像 安装docker 参考https://zhuanlan.zhihu.com/p/143156163 镜像地址 百度企业网盘-企业云盘-企业云存储解决方案-同…

http请求方式过滤器与拦截器的区别

get:获取查询数据(查询)post:数据的提交&#xff0c;新增操作(增加)put:向服务端发送数据、改变信息&#xff0c;侧重点在于对数据的修改操作delete:数据库数据的删除head:一般用来判断类型、根据返回状态确定资源是否存在、资源是否更新以及更新的时间等 过滤器与拦截器的区别…

URI和URL和URN区别

URI、URL 和 URN 是一系列从不同角度来看待资源标识和定位的概念。虽然它们有一些重叠&#xff0c;但每个概念都强调了不同的方面。 URI&#xff08;Uniform Resource Identifier&#xff09;&#xff1a;URI 是一个通用的术语&#xff0c;用于标识和定位资源。它是一个抽象的概…

Sui流动性质押黑客松|本周Workshop预告

Sui流动性质押黑客松正在如火如荼的报名中&#xff0c;Sui基金会现诚邀全球开发者前来参与&#xff0c;助力资产再流通。了解黑客松详情&#xff1a;Sui流动性质押黑客松开启报名&#xff0c;赢取千万美金质押和奖励&#xff01; 黑客松官方网站&#xff1a;Sui Liquid Stakin…

若依cloud -【 47 ~ 】

47 服务监控介绍 什么是服务监控 监视当前系统应用状态、内存、线程、堆栈、日志等等相关信息&#xff0c;主要目的在服务出现问题或者快要出现问题时能够准确快速地发现以减小影响范围。 为什么要使用服务监控 服务监控在微服务改造过程中的重要性不言而喻&#xff0c;没有强…

Linux操作系统--shell编程(正则表达式)

1..正则表达式概述 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中,grep,sed,awk 等文本处理工具都支持通过正则表达式进行模式匹配。 2.常规的匹配操作 3.…

电源防反接电路设计

NMOS防反接&#xff1a; PMOS防反接 在实际应用中&#xff0c;G极一般串联一个电阻&#xff0c;防止MOS管被击穿&#xff0c;也可以加上稳压二极管&#xff0c;并联在分压电阻上的电容&#xff0c;有一个软启动的作用。在电流开始流过的瞬间&#xff0c;电容充电&#xff0c;G极…

一键快速还原修复人脸,CodeFormer 助力人脸图像修复

今天在查资料的时候无意间看到了一个很有意思的工具&#xff0c;就是CodeFormer &#xff0c;作者给出来的说明是用于人脸修复任务的&#xff0c;觉得很有意思就拿来实践了一下&#xff0c;这里记录分享一下。 首先对人脸修复任务进行简单的回顾总结&#xff1a; 人脸修复是指…

thinkphp6 入门(3)--获取GET、POST请求的参数值

一、Request对象 thinkphp提供了Request对象&#xff0c;其可以 支持对全局输入变量的检测、获取和安全过滤 支持获取包括$_GET、$_POST、$_REQUEST、$_SERVER、$_SESSION、$_COOKIE、$_ENV等系统变量&#xff0c;以及文件上传信息 具体参考&#xff1a;https://www.kanclou…

功率放大器选购注意什么问题

功率放大器是将输入信号放大到较高功率输出的重要设备。在选择功率放大器时&#xff0c;需要考虑多个因素&#xff0c;以确保所购买的设备能够满足实际需求。下面西安安泰将介绍一些功率放大器的关键问题和注意事项&#xff0c;帮助大家在功率放大器选购过程中做出明智的决策。…

CentOs下面安装jenkins记录

目录 一、安装jenkins 二、进入jenkins 三、安装和Gitee&#xff0c;Maven等插件 一、安装jenkins 1 wget -O /etc/yum.repos.d/jenkins.repo \ https://pkg.jenkins.io/redhat-stable/jenkins.repo 2 rpm --import https://pkg.jenkins.io/redhat-stable/…