小研究 - Java虚拟机性能及关键技术分析

news2024/11/17 9:42:18

利用specJVM98和Java Grande Forum Benchmark suite Benchmark集合对SJVM、IntelORP,Kaffe3种Java虚拟机进行系统测试。在对测试结果进行系统分析的基础上,比较了不同JVM实现对性能的影响和JVM中关键模块对JVM性能的影响,并提出了提高JVM性能的一些展望。

目录

1  Java虚拟机的关键技术

1.1  字节码执行方式

1.2  自动内存管理

2 JVM 性能的分析和比较

2.1 JVM 的选择

2.2 JVM 性能测试

2.3 JVM 性能的分析和比较

3  结语


Java语言的平台无关性、安全性、自动内存管理等特性,使Java语言得到广泛的应用。Java虚拟机JVM)是 Java平台的核心,JVM读入Java 类文件并执行类文件中的字节码。在一个平台只要有1 个Java虚拟机就可执行Java程序,实现Java语言的平台无关性。Java的字节码中无影响系统安全的指令,同时,JVM读入类文件时,需要预验证类文件,这两点保证了Java语言的安全性。自动内存管理减轻了Java程序员的负担,提高了应用程序的可靠性。但这些特性,使Java的性能受到了一定的影响。字节码执行方式(Execute Engine)和自动内存管理是影响 Java 虚拟机性能的关键模块。本文通过比较几种有代表性的 Java 虚拟机的实现,分析了JVM 中的这2 个关键技术。

1  Java虚拟机的关键技术

1.1  字节码执行方式

最早的Java虚拟机采用的是解释(Interpreter)执行的方式,这种方式效率极低,但JVM的可移植性较好。目前主流的 Java 虚拟机基本采用即时 JIT,Just—In-Time) 编译的方法执行字节码,即将 Java的字节码动态编译为本地的机器码,效率较高,好的JIT 编译效果可以接近 C 语言静态编译的效果。但JIT在执行任何一个方法时,都需要先将该方法编译为本地代码,需要额外的内存存放编译后的本地代码。对于程序中执行频度较低的方法,由于增加了编译的时间,其效率不如解释执行的情况。衡量一个JIT好坏的标准包括编译的代码质量、编译的代码大小以及编译的时间这3个方面。自适应优化(Adap-tive Optimization)是字节码执行的第3 种方式,其实质是混合执行(Mixed code execute)。自适应优化在第1次调用一个方法时,先采用解释执行的方式,当这个方法的调用达到一定的频度而成为“热点”(Hot spot 的方法后,将该方法编译为本地代码,以后对该方法的调用,直接执行编译后的本地代码。

1.2  自动内存管理

自动内存管理也称为垃圾收集(GC,Garbage Collection) ,其作用是自动回收无用单元的内存空间,释放内存的工作由Java虚拟机自动管理,减轻了应用程序员的负担,避免了Java应用程序的内存泄漏。垃圾收集算法的主要评价标准为吞吐量(Throughput)和停顿时间(Pause time) 2个方面。吞吐量指在程序运行中,非垃圾收集的时间与整个应用程序运行时间的比值,比值越高,垃圾收集算法的整体效率越高。

2 JVM 性能的分析和比较

2.1 JVM 的选择

在本测试中,选择了3 个有代表性的虚拟机实现作为研究的对象。

1) Sun Hotspot Client VM 1.4.1 (SJVM) 【1.是Sun公司提供的针对J2SE平台的虚拟机,采用了自适应优化的字节码执行方式、基于代(Generation)的垃圾收集机制、标记-清除(Mark-Sweep)算法和拷贝算法结合的算法。

2) Intel Open Runtime Platform 1.0.10 (Intel ORP 2.是Intel公司提供的Java 虚拟机,提供了针对IA32架构优化的JIT编译器,采用增量式的Train垃圾收集算法。

3)Kaffe 1.0.73.是开放源代码的Java虚拟机实现,它支持的平台较多,垃圾收集机制采用了不分代的保守的标记一清除算法,并提供了 JIT 的编译器。

2.2 JVM 性能测试

通过Benchmark集合的测试,能够有效的比较和分析不同JVM实现对性能的影响以及JVM中关键模块对JVM性能的影响。在本测试中,测试用的Benchmark集合为specJVM98【4】和Java Grande Forum Benchmark suite5.specJVM98采用的是接近真实的应用程序,主要包括Db、Compress、Jess、Javac、Mep-gaudio、Mtrt、Jack7个应用程序。Java Grande Forum Benchmark (以下简称JGF)包括3个部分的测试,第1部分为基本的底层操作,包括算术、赋值、方法调用、异常处理等;第2部分为核心的操作,包括加密、堆排序、矩阵相乘等算法;第3部分为大规模的应用程序,包括了Alpha-beta剪枝搜索、RayTracer等算法。本测试采用的操作系统为Red Hat Linux 7.3.硬件平台为AMD Athlon 1700+,内存256M。图1为specJVM98的测试结果,图2 至图4为JGF3个部分的测试结果。

2.3 JVM 性能的分析和比较

在Java虚拟机中影响性能的模块主要是即时编译和垃圾收集这两个模块。即时编译模块的性能包括编译时间和编译后代码质量两方面。垃圾收集模块主要从吞吐量和停顿时间2 个方面来衡量。

从图1可以看出,Kaffe虚拟机的性能较差,除了第一项测试compress接近SJVM和Intel ORP的性能外,其它测试中的性能表现低于另2个虚拟机的一半。Intel ORP在Compress, Mepgaudio2项测试中要略高于SJVM,而SJVM的性能在其他测试中表现最好。因此,从specJVM98的测试结果来看,SJVM的虚拟机表现最好,Intel ORP的性能较接近SJVM, Kaffe的性能与这两者间有一定的差距。

从图2、图3、图4可以看出:对于JGF基本底层和核心部分的测试,Intel ORP和SJVM的性能相差不大,Kaffe 的性能都低于前两者;对于大规模应用程序的测试,SJVM 的性能远好于 Intel ORP 和Kaffe,而Intel ORP的性能好于Kaffe,这个程序的详细运行结果见表1。

从表1可以看出:Kaffe 的 GC 时间为Intel ORP 的4.79 倍,非GC (大部分为JIT) 时间为Intel ORP的27.87%,非GC时间占整个运行时间的6.40%; Kaffe与Intel ORP相比,大部分的时间花费在JIT编译上; Intel ORP的GC时间为SJVM的25.77倍,非GC时间为SJVM的1.26倍;GC时间占整个运行时间的45.95%。

从以上分析可以看出:

1) SJVM的整体性能是最好的,大部分的性能高于Kaffe和Intel ORP,尤其是在JGF大规模应用程序的测试部分,它的性能远远高于Kaffe和Intel ORP。这是由于字节码执行方式采用了自适应优化的算法,只编译最常用的“热点”方法,同时编译的代码质量较高。

2) SJVM垃圾收集机制较好,也是其性能高于其它两个JVM的关键原因。Intel ORP的即时编译较好,接近SJVM采用的自适应优化的算法,但垃圾收集表现较差,在测试中,一些Benchmark的程序未能正确运行,其语言支持不好。

3) Kaffe的性能表现比较差,主要原因是由于即时编译较差,同时垃圾收集机制的算法也较粗糙。

3  结语

JIT 编译和垃圾收集模块是 JVM 中影响性能的关键模块。JIT 编译的实现与体系结构的关系密切,实现时应充分考虑体系结构的影响,针对目标平台优化。垃圾收集机制的平台相关性较小,实现垃圾收集时,考虑较多的是算法上的提高。当然,不同平台上的内存管理机制还是有差别的,如不同平台上实现虚拟内存的方式、实现cache的方式都有可能不同,这也是提高一个特定平台上垃圾收集机制时需要考虑的因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/933444.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Go版]算法通关村第十四关白银——堆高效解决的经典问题(在数组找第K大的元素、堆排序、合并K个排序链表)

目录 题目:在数组中找第K大的元素解法1:维护长度为k的最小堆,遍历n-k个元素,逐一和堆顶值对比后,和堆顶交换,最后返回堆顶复杂度:时间复杂度 O ( k ( n − k ) l o g k ) O(k(n-k)logk) O(k(n−…

大数据治理运营整体解决方案[39页PPT]

导读:原文《大数据治理运营整体解决方案[39页PPT]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 数据治理总体方案 数据治理平台解决方案 数据治理运…

nginx生成自定义证书

1、创建key文件夹 [rootlocalhost centos]# mkdir key 进入key文件夹 [rootlocalhost centos]# cd key/ 2、生成私钥文件 [rootlocalhost key]# openssl genrsa -des3 -out ssl.key 4096 输入这个key文件的密码。不推荐输入,因为以后要给nginx使用。每次reload ngin…

yolov8热力图可视化

安装pytorch_grad_cam pip install grad-cam自动化生成不同层的bash脚本 # 循环10次,将i的值从0到9 for i in $(seq 0 13) doecho "Running iteration $i";python yolov8_heatmap.py $i; done热力图生成python代码 import warnings warnings.filterwarn…

如何延长周末体验感

美好的周末永远都是从周五开始 为了享受周末的美好时光一定要在周五下班前把工作中应该处理的事情处理好,避免突发事件影响后续的计划。 此外过周五晚上开始做让自己感到开心的事情,以此让自己感觉到周末已经开始了。包括单不限于 享受美食 周五晚上是一…

【业务功能篇84】微服务SpringCloud-ElasticSearch-Kibanan-电商实例应用

一、商品上架功能 ElasticSearch实现商城系统中全文检索的流程。 1.商品ES模型 商品的映射关系 PUT product {"mappings": {"properties": {"skuId": {"type": "long"},"spuId": {"type": "ke…

mall:redis项目源码解析

文章目录 一、mall开源项目1.1 来源1.2 项目转移1.3 项目克隆 二、Redis 非关系型数据库2.1 Redis简介2.2 分布式后端项目的使用流程2.3 分布式后端项目的使用场景2.4 常见的缓存问题 三、源码解析3.1 集成与配置3.1.1 导入依赖3.1.2 添加配置3.1.3 全局跨域配置 3.2 Redis测试…

DataFrame.set_index()方法--Pandas

1.函数功能 为DataFrame重新设置索引(行标签) 2. 函数语法 DataFrame.set_index(keys, *, dropTrue, appendFalse, inplaceFalse, verify_integrityFalse)3. 函数参数 参数含义keys作为行标签的列名,可以DataFrame中的是单个列或者多列组…

【实例分割】(一)Mask R-CNN详细介绍带python代码

目录 1.🍀🍀实例分割定义 2.🍀🍀Mask R-CNN 3.🍀🍀经典的实例分割算法 4.🍀🍀Mask R-CNN python代码 整理不易,欢迎一键三连!!!…

【FreeRTOS】【应用篇】任务管理相关函数

文章目录 前言一、函数解析1. 任务挂起 vTaskSuspend()① 使用场景② 设计思路③ 代码 2. 任务恢复 vTaskResume()① 作用② 设计思路③ 代码 3. 挂起任务调度器 vTaskSuspendAll()① 作用② 代码 4. 恢复任务调度器 xTaskResumeAll()① 设计思路② 代码 5. 任务删除函数 vTask…

牡丹宣言:七种皮肤类型|教你如何区分和保姆级护肤大法

经常听到有人说,我的皮肤T区油,脸颊干,应该是混合型皮肤吧 正常的皮肤根据皮脂腺分泌油脂量的多少可分为:中性,干性,油性,混合性。 接下来小编就帮大家细化整理了七种不同的皮肤类型&#xff0c…

Nginx详解 第一部分:编译安装Nginx+Nginx模块

Part 1 一 、HTTP 和 Nginx1.1 套接字Socket1.2 URL1.2.1 定义1.2.1 URL和URN的区别1.2.3 URL组成 1.3 请求访问完整过程详解 二、I/O模型 处理高并发的时候用2.1 I/O模型简介2.2 多路复用I/O型2.3 异步I/O模型2.4 事件模型 select poll epoll 三、NGINX概述3.1 简介3.2 NGINX和…

【Java并发】聊聊对象内存布局和syn锁升级过程

对象存储解析:一个空Object对象到底占据多少内存? 对象内存布局 Mark Word占用8字节,类型指针占用8个字节,对象头占用16个字节。 好了,我们来看一下一个Object对占用多少空间, 因为java默认是开启压缩…

帆软只是一个BI厂商?答案是“No”!

大数据产业创新服务媒体 ——聚焦数据 改变商业 2023年,8月17-19日,帆软智数大会落子花城广州,邀请了1200海内外CIO和数字化专家,共同探讨数字化转型新机遇。 值得关注的是,这也是帆软首次以BI和零代码双赛道第一的身…

django开发流程

设计model django采用ORM映射,可以在代码中描述数据库的布局 只需要导入from django.db import models 并使类继承models.Model,models中的一个类对应数据库中的一个表,类的变量对应表字段。 创建数据库 $ python manage.py makemigration…

Ubuntu【系统环境下】【编译安装OpenCV】【C++调用系统opencv库】

Ubuntu【系统环境下】【编译安装OpenCV】【C调用系统opencv库】 前言: 本人需要用C写代码,调用OpenCV库,且要求OpenCV版本号大于4.1.0 由于使用的是18.04的版本,所以apt安装OpenCV的版本始终是3.2.0,非常拉胯&#…

python爬虫的js逆向入门到进阶教程文章分享汇总~持续更新

目录 一、内容介绍二 、专栏内容-持续更新1、JS逆向入门2、Js逆向进阶3、爬虫基础知识4、工具与安装5、漫星内容分享 三、星球使用四、b站up主视频推荐 一、内容介绍 二 、专栏内容-持续更新 1、JS逆向入门 2023-08-25》11.常见加密>xx音乐RSA加密 https://articles.zsxq.c…

电视乱收费致200元电视也无人买,广电总局出手了,用户拍手欢迎

各个互联网企业盯着电视用户,将用户当韭菜,收费太狠,导致国内市场的电视销量暴跌,消费者怨声载道,日前国家广播电视台联合其他部门开展专项整治,狠杀这类乱收费的乱象,或许将有望挽回用户。 近几…

报错处理:MySQL数据库连接超时

具体报错: ERROR 2002 (HY000): Cant connect to local MySQL server through socket /var/run/mysqld/mysqld.sock (2) 报错环境:该报错一般发生在Linux服务器上运行MySQL数据库时,尝试连接MySQL时出现连接超时的情况。 排错思路&#xff1a…

VIOOVI分享:什么是动作分析?动作分析的方法有哪些?

动作分析是由吉尔布雷斯夫妇始创的,是根据操作者实施的动作顺序观察动作,用特定的标记记录以手和眼睛为中心的人体各部位的动作内容,掌握实际情况,并将上述记录制成图表的一套分析方法,在此基础上判断动作质量&#xf…