疲劳检测-闭眼检测(详细代码教程)

news2024/11/12 19:48:09

简介

瞌睡经常发生在汽车行驶的过程中,该行为害人害己,如果有一套能识别瞌睡的系统,那么无疑该系统意义重大!
在这里插入图片描述

实现步骤

思路:疲劳驾驶的司机大部分都有打瞌睡的情形,所以我们根据驾驶员眼睛闭合的频率和时间来判断驾驶员是否疲劳驾驶(或嗜睡)。

详细实现步骤

【1】眼部关键点检测。

在这里插入图片描述

我们使用Face Mesh来检测眼部关键点,Face Mesh返回了468个人脸关键点:
由于我们专注于驾驶员睡意检测,在468个点中,我们只需要属于眼睛区域的标志点。眼睛区域有 32 个标志点(每个 16 个点)。为了计算 EAR,我们只需要 12 个点(每只眼睛 6 个点)。

以上图为参考,选取的12个地标点如下:

对于左眼: [362, 385, 387, 263, 373, 380]

对于右眼:[33, 160, 158, 133, 153, 144]

选择的地标点按顺序排列:P 1、 P 2、 P 3、 P 4、 P 5、 P 6

```bash

```bash
import cv2
import numpy as np
import matplotlib.pyplot as plt
import mediapipe as mp

mp_facemesh = mp.solutions.face_mesh
mp_drawing  = mp.solutions.drawing_utils
denormalize_coordinates = mp_drawing._normalized_to_pixel_coordinates

%matplotlib inline
获取双眼的地标(索引)点。

`


```bash
# Landmark points corresponding to left eye
all_left_eye_idxs = list(mp_facemesh.FACEMESH_LEFT_EYE)
# flatten and remove duplicates
all_left_eye_idxs = set(np.ravel(all_left_eye_idxs)) 

# Landmark points corresponding to right eye
all_right_eye_idxs = list(mp_facemesh.FACEMESH_RIGHT_EYE)
all_right_eye_idxs = set(np.ravel(all_right_eye_idxs))

# Combined for plotting - Landmark points for both eye
all_idxs = all_left_eye_idxs.union(all_right_eye_idxs)

# The chosen 12 points:   P1,  P2,  P3,  P4,  P5,  P6
chosen_left_eye_idxs  = [362, 385, 387, 263, 373, 380]
chosen_right_eye_idxs = [33,  160, 158, 133, 153, 144]
all_chosen_idxs = chosen_left_eye_idxs + chosen_right_eye_idx
图片

【2】检测眼睛是否闭合——计算眼睛纵横比(EAR)。

要检测眼睛是否闭合,我们可以使用眼睛纵横比(EAR) 公式:

EAR 公式返回反映睁眼程度的单个标量:

  1. 我们将使用 Mediapipe 的 Face Mesh 解决方案来检测和检索眼睛区域中的相关地标(下图中的点P 1 - P 6)。
  2. 检索相关点后,会在眼睛的高度和宽度之间计算眼睛纵横比 (EAR)。
    当眼睛睁开并接近零时,EAR 几乎是恒定的,而闭上眼睛是部分人,并且头部姿势不敏感。睁眼的纵横比在个体之间具有很小的差异。它对于图像的统一缩放和面部的平面内旋转是完全不变的。由于双眼同时眨眼,所以双眼的EAR是平均的。
    在这里插入图片描述

上图:检测到地标P i的睁眼和闭眼。

底部:为视频序列的几帧绘制的眼睛纵横比 EAR。存在一个闪烁。

首先,我们必须计算每只眼睛的 Eye Aspect Ratio:

|| 表示L2范数,用于计算两个向量之间的距离。

为了计算最终的 EAR 值,作者建议取两个 EAR 值的平均值。

在这里插入图片描述

一般来说,平均 EAR 值在 [0.0, 0.40] 范围内。在“闭眼”动作期间 EAR 值迅速下降。

现在我们熟悉了 EAR 公式,让我们定义三个必需的函数:distance(…)、get_ear(…)和calculate_avg_ear(…)。

def distance(point_1, point_2):
    """Calculate l2-norm between two points"""
    dist = sum([(i - j) ** 2 for i, j in zip(point_1, point_2)]) ** 0.5
    return dist
get_ear ()函数将.landmark属性作为参数。在每个索引位置,我们都有一个NormalizedLandmark对象。该对象保存标准化的x、y和z坐标值。
def get_ear(landmarks, refer_idxs, frame_width, frame_height):
    """
    Calculate Eye Aspect Ratio for one eye.

    Args:
        landmarks: (list) Detected landmarks list
        refer_idxs: (list) Index positions of the chosen landmarks
                            in order P1, P2, P3, P4, P5, P6
        frame_width: (int) Width of captured frame
        frame_height: (int) Height of captured frame

    Returns:
        ear: (float) Eye aspect ratio
    """
    try:
        # Compute the euclidean distance between the horizontal
        coords_points = []
        for i in refer_idxs:
            lm = landmarks[i]
            coord = denormalize_coordinates(lm.x, lm.y, 
                                             frame_width, frame_height)
            coords_points.append(coord)

        # Eye landmark (x, y)-coordinates
        P2_P6 = distance(coords_points[1], coords_points[5])
        P3_P5 = distance(coords_points[2], coords_points[4])
        P1_P4 = distance(coords_points[0], coords_points[3])

        # Compute the eye aspect ratio
        ear = (P2_P6 + P3_P5) / (2.0 * P1_P4)

    except:
        ear = 0.0
        coords_points = None

    return ear, coords_points

最后定义了calculate_avg_ear(…)函数:

def calculate_avg_ear(landmarks, left_eye_idxs, right_eye_idxs, image_w, image_h):
    """Calculate Eye aspect ratio"""

    left_ear, left_lm_coordinates = get_ear(
                                      landmarks, 
                                      left_eye_idxs, 
                                      image_w, 
                                      image_h
                                    )
    right_ear, right_lm_coordinates = get_ear(
                                      landmarks, 
                                      right_eye_idxs, 
                                      image_w, 
                                      image_h
                                    )
    Avg_EAR = (left_ear + right_ear) / 2.0

    return Avg_EAR, (left_lm_coordinates, right_lm_coordinates)

让我们测试一下 EAR 公式。我们将计算先前使用的图像和另一张眼睛闭合的图像的平均 EAR 值。

image_eyes_open  = cv2.imread("test-open-eyes.jpg")[:, :, ::-1]
image_eyes_close = cv2.imread("test-close-eyes.jpg")[:, :, ::-1]

for idx, image in enumerate([image_eyes_open, image_eyes_close]):
   
    image = np.ascontiguousarray(image)
    imgH, imgW, _ = image.shape

    # Creating a copy of the original image for plotting the EAR value
    custom_chosen_lmk_image = image.copy()

    # Running inference using static_image_mode
    with mp_facemesh.FaceMesh(refine_landmarks=True) as face_mesh:
        results = face_mesh.process(image).multi_face_landmarks

        # If detections are available.
        if results:
            for face_id, face_landmarks in enumerate(results):
                landmarks = face_landmarks.landmark
                EAR, _ = calculate_avg_ear(
                          landmarks, 
                          chosen_left_eye_idxs, 
                          chosen_right_eye_idxs, 
                          imgW, 
                          imgH
                      )

                # Print the EAR value on the custom_chosen_lmk_image.
                cv2.putText(custom_chosen_lmk_image, 
                            f"EAR: {round(EAR, 2)}", (1, 24),
                            cv2.FONT_HERSHEY_COMPLEX, 
                            0.9, (255, 255, 255), 2
                )                
             
                plot(img_dt=image.copy(),
                     img_eye_lmks_chosen=custom_chosen_lmk_image,
                     face_landmarks=face_landmarks,
                     ts_thickness=1, 
                     ts_circle_radius=3, 
                     lmk_circle_radius=3
                )

结果:

图片

如您所见,睁眼时的 EAR 值为0.28,闭眼时(接近于零)为 0.08。

【3】设计一个实时检测系统。

在这里插入图片描述

首先,我们声明两个阈值和一个计数器。

  • EAR_thresh: 用于检查当前EAR值是否在范围内的阈值。
  • D_TIME:一个计数器变量,用于跟踪当前经过的时间量EAR < EAR_THRESH.
  • WAIT_TIME:确定经过的时间量是否EAR < EAR_THRESH超过了允许的限制。
  • 当应用程序启动时,我们将当前时间(以秒为单位)记录在一个变量中t1并读取传入的帧。

接下来,我们预处理并frame通过Mediapipe 的 Face Mesh 解决方案管道。

  • 如果有任何地标检测可用,我们将检索相关的 ( Pi )眼睛地标。否则,在此处重置t1 和重置以使算法一致)。D_TIME (D_TIME
  • 如果检测可用,则使用检索到的眼睛标志计算双眼的平均EAR值。
  • 如果是当前时间,则加上当前时间和to之间的差。然后将下一帧重置为。EAR < EAR_THRESHt2t1D_TIMEt1 t2
  • 如果D_TIME >= WAIT_TIME,我们会发出警报或继续下一帧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/932545.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微服务鉴权中心之网关配置SpringSecurity+oauth2

微服务鉴权中心流程如下&#xff1a; 1. 网关配置oauth2之TokenStore存储方式&#xff0c;此处用RedisTokenStore Configurationpublic class TokenConfig {Autowiredprivate RedisConnectionFactory redisConnectionFactory;Beanpublic TokenStore tokenStore() {return new …

生信分析Python实战练习 2 | 视频20

开源生信 Python教程 生信专用简明 Python 文字和视频教程 源码在&#xff1a;https://github.com/Tong-Chen/Bioinfo_course_python 目录 背景介绍 编程开篇为什么学习Python如何安装Python如何运行Python命令和脚本使用什么编辑器写Python脚本Python程序事例Python基本语法 数…

如何做好微信号标签管理?

微信除了生活外&#xff0c;也越来越多企业用微信来联系维护客户和发展自己的私域流量池&#xff0c;微信好友越加越多。 为了提高微信的管理效率&#xff0c;针对不同的微信好友群体进行群发&#xff0c;但每次都要手动打标签很费时间&#xff0c;那么有没有什么工具可以批量打…

Java项目01——项目配置

1. 前置知识&#xff1a; 1.把项目提交到本地仓库 2. gitee新建仓库&#xff0c;idea推送 3. 新建数据库&#xff0c;直接用navicate导入sql语句即可 4. 前后端联调&#xff0c;先编译&#xff0c;然后运行 5. 前端发送的请求&#xff0c;是如何请求到后端服务的&#xff1f…

【提升接口响应能力的最佳实践】常规操作篇

文章目录 1. 并行处理简要说明CompletableFuture是银弹吗&#xff1f;测试案例测试结论半异步&#xff0c;半同步总结 2. 最小化事务范围简要说明编程式事务模板 3. 缓存简要说明 4. 合理使用线程池简要说明使用场景线程池的创建参数的配置建议 线程池的监控线程池的资源隔离 5…

买卖股票的最佳时机 II【贪心策略】

买卖股票的最佳时机 II 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买&#xff0c;然后在 同一天 出售。 返回 你能获得的…

用wireshark流量分析的四个案例

目录 第一题 1 2 3 4 第二题 1 2 3. 第三题 1 2 第四题 1 2 3 第一题 题目&#xff1a; 1.黑客攻击的第一个受害主机的网卡IP地址 2.黑客对URL的哪一个参数实施了SQL注入 3.第一个受害主机网站数据库的表前缀&#xff08;加上下划线例如abc&#xff09; 4.…

【力扣】盛最多水的容器

目录 题目 题目初步解析 水桶效应 代码实现逻辑 第一步 第二步 第三步 代码具体实现 注意 添加容器元素的函数 计算迭代并且判断面积是否是最大值 总代码 运行结果 总结 题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是…

GB28181学习(一)——总述

概念 GB28181全称是“公共安全视频监控联网系统信息传输、交换、控制技术要求”&#xff0c;它定义了视频监控设备之间的联网通信协议&#xff0c;旨在实现视频监控系统的互联互通和统一管理。 架构 GB28181协议的基本架构包括设备端和平台端。 设备端&#xff1a;包括视频监…

广告行业小程序搭建教程,零基础也能轻松上手

随着移动互联网的发展和智能手机的普及&#xff0c;小程序成为了各行业推广和服务的利器。对于广告行业来说&#xff0c;拥有一个专属的小程序不仅能提升企业形象&#xff0c;还可以方便用户查看广告、咨询服务等。那么&#xff0c;如何简单操作一键搭建广告行业小程序呢&#…

小区物业业主管理信息系统设计的设计与实现(论文+源码)_kaic

摘 要 随着互联网的发展&#xff0c;网络技术的发展变得极其重要&#xff0c;所以依靠计算机处理业务成为了一种社会普遍的现状。管理方式也自然而然的向着现代化技术方向而改变&#xff0c;所以纯人工管理方式在越来越完善的现代化管理技术的比较之下也就显得过于繁琐&#x…

SpringCloud超详细教程

1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff1a;将业务的所有…

WEBRTC 的RTP/RTCP的 NACK, PLI,SLI,FIR

1&#xff0c;概述 在网络环境不是太好的情况下&#xff0c;比如网络拥塞比较严重&#xff0c;丢包率可能比较高&#xff0c;简单实用NACK重传的机制&#xff0c;这样就会有大量的RTCP NACK报文&#xff0c;发送端收到相应的报文&#xff0c;又会发送大量指定的RTP报文&#xf…

认识Mybatis的关联关系映射,灵活关联表对象之间的关系

目录 一、概述 ( 1 ) 介绍 ( 2 ) 关联关系映射 ( 3 ) 关联讲述 二、一对一关联映射 2.1 数据库创建 2.2 配置文件 2.3 代码生成 2.4 编写测试 三、一对多关联映射 四 、多对多关联映射 给我们带来的收获 一、概述 ( 1 ) 介绍 关联关系映射是指在数据库中&…

Premiere Pro软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Adobe Premiere Pro&#xff0c;简称PR&#xff0c;是Adobe公司开发的一款非线性视频编辑软件&#xff0c;被广泛应用于电影、电视剧、广告、纪录片、独立电影和音乐会等影视制作领域。它被公认为是行业内的标准工具&#xff0c…

陶哲轩6000字详述:计算机辅助数学证明的历史

导读 几个世纪以来&#xff0c;计算机&#xff08;机器&#xff09;一直是数学家的好朋友&#xff0c;他们利用它计算、提出猜想以及进行数学证明。随着交互式定理证明器、机器学习算法和生成式AI等更为先进的工具的出现&#xff0c;机器被更具创新性和深度的方式得到运用。 近…

深度学习3. 强化学习-Reinforcement learning | RL

强化学习是机器学习的一种学习方式&#xff0c;它跟监督学习、无监督学习是对应的。本文将详细介绍强化学习的基本概念、应用场景和主流的强化学习算法及分类。 目录 什么是强化学习&#xff1f; 强化学习的应用场景 强化学习的主流算法 强化学习(reinforcement learning) …

yum命令安装程序

Ubuntu图系统的安装命令&#xff1a; top命令&#xff1a; df -h查看磁盘占用信息 网络状态监控 环境变量和&#xffe5;符号的用法&#xff1a; 上传下载命令&#xff1a; 压缩解压常见&#xff1a;的压缩格式 tar tar解压&#xff1a;

汤普森采样(Thompson sampling)理论支持

目录 一、UCB与TS算法数学原理&#xff08;1&#xff09;Upper Confidence Bounds 数学原理&#xff08;2&#xff09;Thompson sampling 数学原理1、TS 基本数据原理1. beta 分布2. 共轭分布与共轭先验3. 采样的编程实现 2、TS 算法流程(1) TS算法基础版本 二、UCB与TS算法的优…

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…