卷积神经网络——中篇【深度学习】【PyTorch】【d2l】

news2025/2/24 3:50:42

文章目录

  • 5、卷积神经网络
    • 5.5、经典卷积神经网络(`LeNet`)
      • 5.5.1、理论部分
      • 5.5.2、代码实现
    • 5.6、深度卷积神经网络(`AlexNet`)
      • 5.6.1、理论部分
      • 5.6.2、代码实现
    • 5.7、使用块的网络(`VGG`)
      • 5.7.1、理论部分
      • 5.7.2、代码实现
    • 5.8、网络中的网络(`NiN`)
      • 5.8.1、理论部分
    • 5.9、含并行连结的网络(`GoogLeNet`)
      • 5.9.1、理论部分
      • 5.9.2、代码实现
  • 闲谈

5、卷积神经网络

5.5、经典卷积神经网络(LeNet

5.5.1、理论部分

在这里插入图片描述

  • 两个⌈ 卷积块 ⌋
    • 每个卷积块中的基本单元是一个⌈ 卷积层 ⌋、一个 ⌈ sigmoid激活函数 ⌋和 ⌈ 平均汇聚层 ⌋
  • 三个⌈ 全连接层密集块 ⌋

早期神经网络,先使用卷积层学习图片空间信息,然后全连接层转换到类别空间。

5.5.2、代码实现

定义一个 Sequential块

LeNet-5相比,这里去掉了最后一层的高斯激活。

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
nn.Conv2d(input_channel_size, output_channel_size, kernel_size=,stride=,padding=)

检查输出形状

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
Sigmoid output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
Sigmoid output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
Sigmoid output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
Sigmoid output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])

在这里插入图片描述

模型训练

使用 Fashion-MNIST数据集

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

训练&评估LeNet-5

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.452, train acc 0.832, test acc 0.812
46735.1 examples/sec on cuda:0

在这里插入图片描述

5.6、深度卷积神经网络(AlexNet

5.6.1、理论部分

组成

五个卷积层、两个全连接隐藏层和一个全连接输出层。

在这里插入图片描述

较于 LeNet 的改进:

  • 丢弃法(控制复杂度);

  • ReLu(减缓梯度消失);

  • MaxPooling;

  • 数据增强;

  • 架构(卷积窗口更大、通道更多、全连接层更大、网络更深)。

5.6.2、代码实现

定义Sequential块

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

读取数据集

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

训练

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

5.7、使用块的网络(VGG

5.7.1、理论部分

经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层;

  2. 非线性激活函数,如ReLU;

    使用激活函数目的 | 激活卷积结果的含义:为了引入非线性变换

  3. 汇聚层,如最大汇聚层。

VGG块

AlexNet 卷积层、汇聚层重复成块,实现更大更深的网络。

不同的卷积块个数和超参数可得到不同的VGG块。

相较于 AlexNet

在这里插入图片描述

5.7.2、代码实现

定义VGG

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)
for _ in range(num_convs):
  # 代码块

这段代码在不需要迭代变量的情况下,使用下划线 _ 作为一个通用的迭代占位符,表示在每次迭代中不需要使用迭代的值。

实现VGG-11

VGG-11网络使用8个卷积层和3个全连接层。

定义超参数

#指定了每个VGG块里卷积层个数和输出通道数
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分 
    # num_convs: 表示在该卷积块中有多少个连续的卷积层
    for (num_convs, out_channels) in conv_arch:
        # vgg_block:这是一个函数,用于构建 VGG 模型中的卷积块。该函数将根据传入的 num_convs、in_channels 和 out_channels 参数构建一个卷积块。
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        # `*conv_blks` 被用于将     `conv_blks` 列表中的所有卷积块解包并作为参数传递给 `nn.Sequential` 构造器。
        # nn.Flatten():这是用于将最后一个卷积层输出的特征图展平成一维向量,以便连接到全连接层。
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

*conv_blks:* 可以用来解包一个列表或元组,将其拆分成单独的元素。

构建一个高度和宽度为224的单通道数据样本X

X = torch.randn(size=(1, 1, 224, 224))

训练模型

# 定义一个比例因子 ratio,用于缩小 VGG 模型中卷积层的输出通道数。
ratio = 4
# // 整除出运算,向下取整
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

这里缩小 VGG-11 模型中卷积层的输出通道数的原因

VGG-11AlexNet计算量更大,缩小通道减少计算量,但足够用于训练Fashion-MNIST数据集。

lr, num_epochs, batch_size = 0.05, 10, 128
# resize=224 指定了将图像大小调整为224x224像素
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

5.8、网络中的网络(NiN

5.8.1、理论部分

为什么提出NiN?

全连接层是网络里参数比重最高的地方(参数=输入通道*高*宽*输出通道*高*宽),尤其是卷积后的第一个全连接层。而卷积层参数就小得多。所以用卷积层替代全连接层,参数会更少。

NiN架构

  • 交替使用NiN块和MaxPool(stride=2),NiN块的两个1×1卷积层对每个像素增加了非线性;

  • 逐步缩小高宽,增大通道数;

    输入通道数=类别数

  • 全局AvgPool 得到输出,无全连接层,使用全局AvgPool代替全连接层,这样做不容易过拟合,需要的参数更少。

在这里插入图片描述

5.9、含并行连结的网络(GoogLeNet

5.9.1、理论部分

GoogLeNet架构

5段,9个inception块。

在这里插入图片描述

  • 模型参数小,计算复杂度低;

  • Inception块,从四个路径不同层面抽取信息,在输出通道维合并。

    在这里插入图片描述

    x.shape 为 n*n
    
    通道1:n  - 1 +1 =n
    
    通道2:n + 1 * 2 - 3 +1 = n
    
    通道3:n + 2 * 2 - 5 +1 = n
    
    通道4:n + 2 - 3 + 1 = n
    
    合并后,shape 为n*4n
    
  • 第一个百层网络,有后续改进。

卷积层后面一定要跟着池化层吗?

卷积层和池化层通常一起使用在卷积神经网络(CNN)中,这是因为它们在不同的层次上提供了一些有益的特性,帮助网络更好地捕获图像特征、减少过拟合以及降低计算负担。虽然不是一定要跟着池化层,但这种组合在很多情况下被证明是有效的。

经过卷积层之后,特征图包含了更高级的特征表示。池化操作有助于进一步提取这些抽象特征,从而让网络更加关注物体的重要特征,而不是像素级细节。

池化操作有助于减少模型对训练数据中微小变化的敏感性,从而降低过拟合的风险。通过降低特征图的维度,池化层可以在一定程度上提取出更稳定的特征,减少模型对噪声的响应。

池化层可以减小特征图的尺寸,通过保留主要信息的同时降低计算复杂度。池化操作还有助于增加模型对于平移、旋转和缩放等空间变化的鲁棒性,提供了一定程度的空间不变性。这对于图像识别任务很有帮助,因为我们希望模型能够识别出物体不受其在图像中的位置变化的影响。

池化层在减小特征图尺寸的同时,也减少了网络中的参数数量。这有助于减轻模型的计算负担和内存需求,特别是在深层网络中。

5.9.2、代码实现

定义Inception

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

# 定义继承自 nn.Module 的类
class Inception(nn.Module):
    # 类的构造函数
    # self: 指代对象本身,这里指代的是 Inception 模块的实例
    # **kwargs: 用于接收不定数量的关键字参数,以字典的形式传递给函数或方法
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        # 调用父类 nn.Module 的构造函数,并传递额外的关键字参数 **kwargs
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)

F.relu()nn.ReLU()区别?

F.relu()

  • F 表示 torch.nn.functional 模块,这是 PyTorch 中提供的函数式接口,它是一个纯函数。
  • 由于是函数式接口,F.relu() 在使用时不会产生可训练的参数,也不会被添加到网络的计算图中。

nn.ReLU()

  • nn 表示 torch.nn 模块,nn.ReLU() 是一个类,它实际上是一个层(Layer),可以像其他层一样添加到神经网络中。
  • 由于是层,nn.ReLU() 在使用时会被添加到网络的计算图中,可以进行反向传播,如果模型是可>训练的,该层的参数也会被优化器更新。

GoogLeNet定义成5个 Sequential

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# 它接受的输入通道数是 192,然后定义了四个分支:
# 64 个输出通道的线路1
# (96, 128) 个输出通道的线路2
# (16, 32) 个输出通道的线路3
# 32 个输出通道的线路4
# 对应类构造函数的 in_channel,c1-c4
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   # 自适应平均池化层,用于将特征图的尺寸自适应地汇聚到指定的输出尺寸。自适应池化层在网络的最后用于全局特征提取和尺寸统一化,适用于不同尺寸的输入。然而,在网络的前期,普通池化层更适合逐渐减小特征图的尺寸和抽取低级别的特征。
                   nn.AdaptiveAvgPool2d((1,1)),
                   # 卷积和池化等操作后输出多维的特征图(也称为张量),但在进入全连接层之前,需要将这个张量转换为一个一维向量
                   nn.Flatten())
# 全连接层输入特征向量的长度为 1024,输出为长度为 10 的向量
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
#将输入的高和宽从224降到96,这简化了计算
X = torch.rand(size=(1, 1, 96, 96))
#可验证块形状(略)

训练模型

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

闲谈

个性化定制界面与极简版原装界面:我们为什么选择个性化?

随着科技的不断发展,人们对于界面设计和用户体验的要求也越来越高。在软件、应用程序、网站等各种数字平台中,界面是用户与系统之间的桥梁,直接影响着用户的使用感受。在这个背景下,个性化定制界面和极简版原装界面成为了用户选择的两种不同趋势。


个性化定制界面,作为一种用户体验的关键创新,强调了用户的个人喜好和需求。通过允许用户自定义颜色、布局、字体等元素,个性化界面能够更好地满足不同用户的审美和操作偏好。这种方式可以使用户感到更加亲近和熟悉,提升了用户的情感连接。此外,个性化界面还能够提升用户的工作效率和生产力,因为用户可以将界面调整为最适合自己工作方式的状态,减少不必要的操作和寻找时间。
然而,极简版原装界面也有其独特的优势。极简界面强调简洁、直观,去除了冗余的元素和复杂的设计,使用户能够更加专注地完成任务。这种设计风格适用于那些追求高效率、集中注意力的用户群体。极简界面的设计哲学是“少即是多”,它通过减少视觉噪音和干扰,使用户能够更轻松地掌握操作逻辑,降低了学习成本。
那么,为什么选择个性化界面?个性化界面在满足用户需求方面具有独特的优势。每个人的审美和操作习惯都不同,个性化界面可以让用户在熟悉和舒适的环境中工作,提升工作效率和用户满意度。同时,个性化界面还有助于品牌塑造和用户情感连接的建立,因为用户可以将界面个性化地定制成与品牌形象相符的样式。
综合来看,个性化定制界面和极简版原装界面各有其适用场景。在不同的用户需求和使用场景下,选择合适的界面设计风格能够更好地满足用户的期望。无论是追求与品牌形象一致的个性化,还是追求高效率和专注的极简体验,界面设计都应该以用户为中心,创造出更优秀的用户体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/927052.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计网第四章(网络层)(二)

目录 IPV4地址编址 第一历史阶段(分类编址): A类地址: B类地址: C类地址: D类地址(多播地址): E类地址(保留地址): 第二历史阶…

懵了,面试官问我Redis怎么测,我哪知道!

有些测试朋友来问我,redis要怎么测试?首先我们需要知道,redis是什么?它能做什么? redis是一个key-value类型的高速存储数据库。 redis常被用做:缓存、队列、发布订阅等。 所以,“redis要怎么测…

数据通信——OSPF基础

一,实验背景 公司盈利了,老总打算扩展公司规模,也发现了RIP协议的缺点带来的影响。身为工程师,老总让你替换更好的网络,顺带为拓展出的新部门进行新的网络部署,甚至买来很多设备。 此时你要用OSPF协议解决问…

推荐系统在线峰会来了,冷启动、推荐工程、模型训练…你都能找到答案

回顾推荐系统的发展历程,从 30 余年前的协同过滤算法起步,经历了深度学习的浪潮,到如今热火朝天的大模型,推荐系统一次又一次地焕发出新的活力。随着大模型的到来,推荐系统正处于变革的前夜,原有的系统模块…

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称: 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 &…

最新Python浪漫520表白代码?

前言 520是每年的5月20日,因数字“520”与“我爱你”发音相似而被许多年轻人用作表达爱意的节日。这个节日起源于中国互联网文化,逐渐传递到其他国家和地区。在这一天,情侣们通常会互送礼物、发表情、或者举行浪漫的活动来庆祝爱情。快来领取…

Unity ProBuilder SetUVs 不起作用

ProBuilder SetUVs 不起作用 🐟 需要设置face.manulUV true public static void Set01UV(this ProBuilderMesh mesh){foreach (var face in mesh.faces){face.manualUV true;//设置为手动uv}var vertices mesh.GetVertices().Select(v > v.position).ToArray(…

计算机竞赛 基于图像识别的跌倒检测算法

前言 🔥 优质竞赛项目系列,今天要分享的是 基于图像识别的跌倒检测算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/…

大数据平台安全主要是指什么安全?如何保障?

大数据时代已经来临,各种数据充斥着我们的生活与工作。随着数据的多样性以及复杂性以及大量性,大数据平台诞生了。但对于大数据平台大家都不是很了解,有人问大数据平台安全主要是指什么安全?如何保障? 大数据平台安全…

9.阿里Sentinel哨兵

1.Sentinel Sentinel(哨兵)是由阿里开源的一款流量控制和熔断降级框架,用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分,用于保护服务不被异常流量冲垮,从而提高系统的稳定…

angular15 数据切换报错

解决方案 1.涉及的属性不要公用,只能有一个标签调用 2.settimeout setTimeout(() > { xxx //导致报错的赋值代码 }, 0);

全新红娘交友系统定制版源码/相亲交友小程序源码

全新红娘交友系统定制版源码,相亲交友小程序源码。定制版红娘交友平台小程序源码,很牛逼的东西,虽然是小程序,但是有700多M大,功能超级强大,还带聊天等功能。 下载地址:https://bbs.csdn.net/t…

Drools的KieSession(有状态会话)的获取,领导就说一句话,员工加班都做不完!

使用Drools规则引擎的代码,最简单的主要有以下几部分: //这一部分的连接:“万恶”之源的KieServices,获取代码就一行,表面代码越少里面东西就越多,本以为就是个简单的工厂方法,没想到里面弯弯绕…

Windows下编译NextCloud desktop 3.9.1

首先从官方下载源码: https://github.com/nextcloud/desktop💻 Desktop sync client for Nextcloud. Contribute to nextcloud/desktop development by creating an account on GitHub.https://github.com/nextcloud/desktop 我选择的是3.9.1的稳定版本…

工控机引领移动机器人的智能化革命!

随着制造业数字化转型的加速,工业4.0时代的到来,工业互联网逐步成为中国推进新型工业化进程的核心驱动力量。而工控机作为工业互联网领域的重要组成部分,已经在越来越多行业得到广泛应用。据中商情报网数据显示,2022年我国工业自动…

Linux CentOS7系统,抓取http协议的数据包

使用 tcpdump 命令 1.首先确认是否安装 [rootlocalhost ~]# which tcpdump /usr/bin/which: no tcpdump in (/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin) [rootlocalhost ~]#我这里没有安装 1.1 安装 tcpdump yum install tcpdump 安装成功如下&#xf…

【Linux】进程间通信原理与Reactor模式

一、用户进程缓冲区和内核缓冲区 缓冲区的目的,是为了减少频繁的系统IO调用。大家都知道,系统调用需要保存之前的进程数据和状态等信息,而结束调用之后回来还需要恢复之前的信息,为了减少这种损耗时间、也损耗性能的系统调用&…

有趣的无限缓存OOM现象

作者:邹阿涛涛涛涛涛涛 想必大家都知道OOM是啥吧,我就不扯花里胡哨的了,直接进入正题。先说一个背景故事,我司app扫码框架用的zxing,在很长一段时间以前,做过一系列的扫码优化,稍微列一下跟今天…

学习ts(九)混入

对象混入 使用Object.assign()进行对象混入,最后的people会被识别为三种类型的联合类型 类混入 使用implement并非extnds实现混入。 属性在混入类里面定义,分别在类中占位,方法分别在类中定义,在混合类中占位。这告诉编译器这…

自动化的驱动力,工控机助您实现智能生产!

“智能工厂建设如火如荼,部分成果已经落地,在大规模资金投入的市场催化下,海尔、海信等制造企业通过智能工厂手段推进生产效率成倍增长的新闻层出不穷。在工业4.0时代,“中国制造2025”战略中,智能工厂构建都是其中不可…