ElasticSearch-集成ik分词器

news2025/1/20 17:11:18
本文已收录于专栏
《中间件合集》

目录

  • 背景介绍
  • 版本选择
  • 优势说明
  • 集成过程
    • 1.下载安装包
    • 2.解压安装包
    • 3.重启ElasticSearch服务
      • 3.1通过ps -ef | grep elastic查看正在启动的es进程号
      • 3.2使用kill -9 xxx 杀死进程
      • 3.3使用 ./elasticsearch 启动es服务
  • 分词测试
    • 细粒度分词方式
      • 分词请求
      • 分词结果
    • 粗粒度分词方式
      • 分词请求
      • 分词结果
    • 项目中
      • 代码
      • 结果
  • 总结提升

背景介绍

  我们在项目中集成了ElasticSearch服务之后,需要对内容进行分词处理。这时候就需要用到分词器。其实ElasticSearch服务自身也会带有分词器。ElasticSearch服务自带的分词器是单个字进行分的。在我们的业务当中要求对整个词进行拆分。这时候就用到了ik分词器。ik分词器是词库分词的分词方式。当然根据我们的业务不同还可以选择其他的分词器。

版本选择

优势说明

Elasticsearch的IK分词器是一种流行的中文分词器,它有以下几个优势:

  • 「 中文分词 」:IK分词器专门用于处理中文文本,能够将连续的中文字符序列切分成有意义的词语。它支持细粒度和智能切分两种分词模式,可以根据需求选择合适的模式。
  • 「 高效性能 」:IK分词器在分词速度和内存占用方面具有较高的性能。它采用了基于词典的分词算法和N-gram模型,能够快速准确地进行分词处理。
  • 「支持扩展词典 」:IK分词器允许用户自定义扩展词典,可以添加特定的词汇,如专业术语、品牌名等,以提高分词的准确性和覆盖范围。
  • 「支持拼音分词」:IK分词器还提供了拼音分词功能,可以将中文文本转换成拼音,并进行分词处理。这对于拼音搜索和拼音排序等场景非常有用。
  • 「多语言支持」:除了中文,IK分词器还支持其他语言的分词处理,如英文、日文等。它可以根据不同的语言特点进行相应的分词处理,提高搜索的准确性和效果。

集成过程

1.下载安装包

ik地址:https://github.com/medcl/elasticsearch-analysis-ik/releases
在这里插入图片描述

2.解压安装包

解压并重命名为IK 将整个文件夹上传到es 中的 plugins 目录中

unzip elasticsearch-analysis-ik-7.6.1.zip

在这里插入图片描述

3.重启ElasticSearch服务

3.1通过ps -ef | grep elastic查看正在启动的es进程号

3.2使用kill -9 xxx 杀死进程

3.3使用 ./elasticsearch 启动es服务

在这里插入图片描述

分词测试

细粒度分词方式

分词请求

POST test002/_analyze?pretty=true

{
"text":"我们是软件工程师",
"tokenizer":"ik_max_word"
}

分词结果

{
    "tokens": [
        {
            "token": "我们",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "是",
            "start_offset": 2,
            "end_offset": 3,
            "type": "CN_CHAR",
            "position": 1
        },
        {
            "token": "软件工程",
            "start_offset": 3,
            "end_offset": 7,
            "type": "CN_WORD",
            "position": 2
        },
        {
            "token": "软件",
            "start_offset": 3,
            "end_offset": 5,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "工程师",
            "start_offset": 5,
            "end_offset": 8,
            "type": "CN_WORD",
            "position": 4
        },
        {
            "token": "工程",
            "start_offset": 5,
            "end_offset": 7,
            "type": "CN_WORD",
            "position": 5
        },
        {
            "token": "师",
            "start_offset": 7,
            "end_offset": 8,
            "type": "CN_CHAR",
            "position": 6
        }
    ]
}

粗粒度分词方式

分词请求

POST test002/_analyze?pretty=true

{
"text":"我们是软件工程师",
"tokenizer":"ik_max_word"
}

分词结果

这一次得到了分词的效果:
```json
{
    "tokens": [
        {
            "token": "我们",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "是",
            "start_offset": 2,
            "end_offset": 3,
            "type": "CN_CHAR",
            "position": 1
        },
        {
            "token": "软件",
            "start_offset": 3,
            "end_offset": 5,
            "type": "CN_WORD",
            "position": 2
        },
        {
            "token": "工程师",
            "start_offset": 5,
            "end_offset": 8,
            "type": "CN_WORD",
            "position": 3
        }
    ]
}

项目中

代码

@Autowired
    private RestHighLevelClient client;

    public void test() throws IOException {
        AnalyzeRequest analyzeRequest = AnalyzeRequest.withGlobalAnalyzer("ik_smart", "武梓龙来写CSDN博客来了");
        AnalyzeResponse analyze = client.indices().analyze(analyzeRequest, RequestOptions.DEFAULT);
        for (AnalyzeResponse.AnalyzeToken token : analyze.getTokens()) {
            System.out.println(token.getTerm());
        }
    }

  示例是将一段话进行分词操作,其中withGlobalAnalyzer方法的第一个参数是指定分词器ik_smart分词器(当然也可以使用其他分词器,根据业务的需求进行调整) 是es服务中安装了IK的插件实现的,如果不安装IK分词器的插件ik_smart分词器是无法使用的。第二个参数就是我们分词的内容了。

结果

在这里插入图片描述

总结提升

  IK分词器在中文分词方面具有较好的准确性和性能,支持自定义词典和拼音分词,适用于各种中文搜索和分析场景。它是Elasticsearch中常用的中文分词器之一。

🎯 此文章对你有用的话记得留言+点赞+收藏哦🎯

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/925559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

git操作:将一个仓库的分支提交到另外一个仓库分支

这个操作,一般是同步不同网站的同个仓库,比如说gitee 和github。某个网站更新了,你想同步他的分支过来。然后基于分支开发或者其它。 操作步骤 1.本地先clone 你自己的仓库。也就是要push 分支的仓库。比如A仓库,把B仓库分支&am…

字节8年经验之谈 —— 如何设计一个自动化测试平台?

之前写过很多自动化测试相关的文章,后台有同学留言:希望写一篇自动化测试平台的文章。他的原话是这样:目前市场上开源或者商业的自动化测试平台很多,但试用下来总感觉有些地方不太融洽,想自己落地一个适合自己团队和项…

LC-1448. 统计二叉树中好节点的数目(DFS、)

1448. 统计二叉树中好节点的数目 中等 给你一棵根为 root 的二叉树,请你返回二叉树中好节点的数目。 「好节点」X 定义为:从根到该节点 X 所经过的节点中,没有任何节点的值大于 X 的值。 示例 1: 输入:root [3,1,…

Python案例|Matplotlib库实现的数据分析

数据展示是数据分析和挖掘中的重要环节,通过图形的形式可以直观、清晰地呈现数据内在的规律。 本文所用数据采用上一篇案例实现后的数据表,数据存储在newbj_lianJia.csv文件中,具体代码如下。 import pandas as pd #导入库 import matplot…

论文阅读_图形图像_U-NET

name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation name_ch: U-Net:用于生物医学图像分割的卷积网络 addr: http://link.springer.com/10.1007/978-3-319-24574-4_28 doi: 10.1007/978-3-319-24574-4_28 date_read: 2023-02-08 date_publi…

基于“R语言+遥感“水环境综合评价方法教程

详情点击链接:基于"R语言遥感"水环境综合评价方法教程 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址…

MyBatis分页插件PageHelper的使用及特殊字符的处理

目录 一、PageHelper简介 1.什么是分页 2.PageHelper是什么 3.使用PageHelper的优点 二、PageHelper插件的使用 原生limit查询 1. 导入pom依赖 2. Mybatis.cfg.xml 配置拦截器 3. 使用PageHelper进行分页 三、特殊字符的处理 1.SQL注入: 2.XML转义&#…

C语言:选择+编程(每日一练Day8)

目录 选择题: 题一: 题二: 题三: 题四: 题五: 编程题: 题一:字符个数统计 思路一: 题二:多数元素 思路一: 本人实力有限可能对一些…

创建harbor仓库并进行一些操作

文章目录 前言一、使用mysql:5.6和 owncloud 镜像,构建一个个人网盘。二、安装搭建私有仓库 Harbor1、安装docker-compse2、安装harbor 3、修改配置文件4、运行脚本5 登入harbor仓库总结 前言 本篇文章需要完成的以下几个操作: 使用mysql:5.6和 ownclo…

0基础学习VR全景平台篇 第90篇:智慧眼-数据统计

【数据统计】是按不同条件去统计整个智慧眼项目中的热点,共包含四大块,分别是数据统计、分类热点、待审核、回收站,下面我们来逐一进行介绍。 1、数据统计 ① 可以按所属分类、场景分组、所属场景、热点类型以及输入热点名去筛选对应的热点&…

Spring之Spring生态系统的演进

未来展望:Spring生态系统的演进 未来展望:Spring生态系统的演进 摘要引言词汇解释详细介绍新技术趋势与影响开发方向与展望探讨Spring在未来的发展趋势微服务与云原生响应式编程强调开发效率和全栈式开发支持人工智能和大数据保持灵活性和创新性 针对新兴…

有效降低传导辐射干扰

一直以来,设计中的电磁干扰(EMI)问题十分令人头疼,尤其是在汽车领域。为了尽可能的减小电磁干扰,设计人员通常会在设计原理图和绘制布局时,通过降低高di / dt的环路面积以及开关转换速率来减小噪声源。 但…

SpringBootWeb案例 Part 4

3. 修改员工 需求:修改员工信息 在进行修改员工信息的时候,我们首先先要根据员工的ID查询员工的信息用于页面回显展示,然后用户修改员工数据之后,点击保存按钮,就可以将修改的数据提交到服务端,保存到数据…

eps三维测图软件工具箱设置

1、打开软件,点击工具箱按钮。具体如下: 2、点击工具箱内分组按钮,右键选择插入命令。如下: 3、进入命令设置界面,如下:

Android View动画整理

此前也有写 View 动画相关的内容,但都只是记录代码,没有特别分析。以此篇作为汇总、整理、分析。 Android View 动画有4中,分别是 平移动画 TranslateAnimation缩放动画 ScaleAnimation旋转动画 RotateAnimation透明度动画 AlphaAnimation …

深度学习模型优化:提高训练效率和精度的技巧

文章目录 1. 数据预处理2. 批量归一化(Batch Normalization)3. 学习率调整4. 提前停止(Early Stopping)5. 模型压缩与剪枝6. 模型并行与分布式训练7. 自动化超参数调整结论 🎉欢迎来到AIGC人工智能专栏~探索Java中的静…

【MySQL】2、MySQL数据库的管理

常用 describe user; Field:字段名称 Type:数据类型 Null :是否允许为空 Key :主键 Type:数据类型 Null :是否允许为空key :主键 Default :默认值 Extra :扩展属性,例如:标志符列(标识了种子,增量/步长)1 2 id:1 3 5 …

机器视觉工程师,2023年最大忠告,没实力,别辞职

最近很多粉丝频繁联系我,太难了,想辞职,干不下去,想要要辞职。 我会慢慢和他分析他当前的优势和劣势,从目前掌握各家公司招聘的信息来看,分以下几种情况: 第一:员工流动性大的公司&…

badgerdb 压缩合并

压缩合并原因 badgerdb是lsm tree派系的数据库,put,delete接口都是通过追加写日志的方式来保存的,日志如果一直不清理,会导致读性能越来越差,占用的存储空间也越来越大,badgerdb为了解决这些问题&#xff0…