大数据风控介绍

news2025/1/21 1:02:51

众所周知,金融是数据化程度最高的行业之一,也是人工智能和大数据技术重要的应用领域。随着大数据收集、存储、分析和模型技术日益成熟,大数据技术逐渐应用到金融风控的各个环节。个推作为专业的数据智能服务商,拥有海量数据资源,在智慧金融领域也推出了相应的数据解决方案-个真,为金融客户提供智能反欺诈、多维信贷风险评估和高意愿用户智能筛选等全流程的数据服务,助力各金融机构全面提升风控能力。本文将围绕大数据风控,结合个推实践,介绍金融风控机器学习的基本流程、算法实践和产品化建设等内容。
在这里插入图片描述

风控流程 & 多维度特征

大数据风控的内容

数据是风控的核心要素,大数据风控实际上就是对数据的处理、建模和应用的过程。大数据风控的流程主要分为四个阶段:数据获取、数据分析、数据建模、风控产品应用。对获取到的海量数据进行清洗和挖掘,有针对性地对金融特征进行深加工;接着通过规则策略和模型算法的构建,对外输出相应的风控服务。

个推以消息推送服务起家,为数十万APP提供高效稳定的推送服务,并沉淀了丰富的数据资源,覆盖超过40亿终端设备,数据全面、广泛且有深度。利用设备基础信息、线上APP偏好数据、线下场景数据以及外部补充数据,个推构建了8个维度、350+特征,同时对特征进行动态更新。基本属性、资产、金融、行为偏好、社会属性、消费偏好、风险和稳定性构成了个推金融数据的八大维度;个推利用数据的八大维度,逾350种特征进行模型构建,并将其应用于金融风控各环节。

金融风控机器学习的基本流程

整个风控建模流程,在个推大数据平台上完成。首先,对持续更新的海量一手数据进行收集、清洗、存储,在数据存储前进行ID打通;第二步,对清洗好的原数据进行特征构建;最后,利用多维度特征进行金融风控模型构建,用到的技术包括协同推荐算法、LR算法、XGBoost、营销模型、多头模型和信用分模型等。
在这里插入图片描述

建模流程

如何高效构建特征,是风控建模中一个至关重要的问题。在实践中,个推会对特征进行稳定性分析、脏数据/异常数据处理、特征分箱、特征聚合和特征有效性验证。特征评估指标则包括IV值、Gain值、单调性、稳定性和饱和度等。

风控场景机器学习的算法实践

利用上述多维度特征和建模能力,增能于贷前、贷中和贷后全流程:拉、选、评、管、催五大环节。

在这里插入图片描述

全流程数据增能

拉-营销模型,甄别虚假注册,评估借贷意愿

在拉新获客阶段,个推制定贴合大额、小额两种营销场景需求的营销模型,通过规则策略、模型策略、风控策略三管齐下,帮助客户识别“真人”,有效降低获客成本、提升注册率和转化率。客户可通过提供样本数据,通过个推来完成建模,同时,在缺乏样本数据的情况下,个推依托自身积累的海量样本数据,可以构建出多种营销场景下的通用模型,供客户使用。

选-贷前的审核,识别欺诈人群,防范恶意骗贷

贷前审核阶段我们通常采取两个策略:欺诈分模型、风险人群筛选。欺诈分模型指的是根据客户提供的数据信息在个推平台进行数据转换、特征匹配,并对其风险特征予以筛选,利用预设规则予以打分,最后得出相应的欺诈分。个推在逾350种特征中识别出数几十种风险特征。举例来说,当某用户安装小贷类APP达到多款以上,或线下到访场景异常,或该用户命中黑名单都会被识别为风险特征。根据欺诈分的高低予以排序,为客户列出不准入人员、需重点关注人员等。

风险人群筛选指的是根据用户存在的风险特征数量及程度,梳理出风险人员。个推利用筛选出的8种维度、350+特征,通过模型预测和规则制定,输出三类风险人群:黑名单、灰名单、多头名单。多头名单顾名思义,当某用户频繁安装或卸载多款借贷类APP时则会被模型系统判定为多头人员;灰名单指的是稳定性较差的人员,黑名单指的是异常人员。在贷前审核阶段,黑名单人员可直接不予以准入,灰名单和多头人员则需要重点关注。

评-信用分模型,贷前信用评估,辅助贷款定额

在评的阶段,个推采用信用分模型,为客户输出用户的信用评分。信用评分由五种维度构建而成:资产、身份、稳定性、关系、行为。个推信用评分模型先根据模型训练与规则模型,得到各个维度分,再将五个维度的个人评分作为特征输入模型,作为特征得到总体个人信用分。

信用分模型由多个模型整合而成,第一层是分类模型(lr+xgboost),得到分值;第二层在维度分的基础上再进行回归,得到最终信用评分。

管-贷中管控,监测异常特征,实现风险预警

在管的环节,个推采用贷中监测模型。从整体人群筛选出逾期相似(相关)人群,结合实时数据与高危特征异常监测得到高疑用户,结合客户的实际需求,对此类用户通过进一步的精准研判得到逾期风险人员,将此类人员告知客户,让其予以重点关注或排查。

催-贷后催管,催回价值评估,提高催回效率

在催的环节,个推基于自身构建的催回评分系统,可以有效指导金融机构制定差异化催管策略,助力更高效地完成催收工作。比如,当客户出现逾期和坏账时,金融机构通过个推的催回评分,对用户的还款能力和还款意愿进行评估,从而判断哪些用户优先催。

风控系统产品化

前面几个流程主要讲的是个推利用多维度特征自主构建风控模型,但在很多业务场景客户希望快速构建特征、快速返回风控结果。为此,我们研发上线个真决策引擎,在规则设计层为客户提供风控规则,让业务人员在规则执行层通过规则性加工进行灵活操作,目前已提供给部分客户试用。
在这里插入图片描述

风控决策引擎

如今,科技与金融深度交融的时代已经到来,金融风险控制任重而道远,。个推将持续挖掘其丰富的数据资产,不断打磨自身技术,助力金融行业运作效率和服务能力的全面提升。

大数据实践——构建新特征指标与构建风控模型
https://blog.csdn.net/Tianweidadada/article/details/88902581/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/925437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android项目如何上传Gitee仓库

前言 最近Android项目比较多,我都是把Android项目上传到Gitee中去,GitHub的话我用的少,可能我还是更喜欢Gitee吧,毕竟Gitee仓库用起来更加方便 一. 创建Gitee仓库 1. 先创建一个Gitee账号,然后登录上去 2. 创建Androi…

基于JSP+Servlet+mysql养老院管理系统

基于JSPServletmysql养老院管理系统 一、系统介绍二、功能展示四、其他系统实现五、获取源码 一、系统介绍 项目类型:Java web项目 项目名称:基于JSPServlet的养老院管理系统 [yanglaoyuan] 当前版本:V1.0.0版本 难度等级:✩✩点…

恒运资本分析:科技股有哪些股票?

跟着科技的不断进步,科技职业越来越遭到人们的重视。在股市中,出资科技股票已经成为人们赚取高额收益的一种方法。那么科技股有哪些值得出资的股票呢?本文将从多个角度剖析科技股。 一、美股科技股票 在美股商场中,科技股票一向以…

QIIME 2教程. 29补充资源SupplementaryResources(2023.5)

补充资源 Supplementary resources https://docs.qiime2.org/2023.5/supplementary-resources/ 教学内容 Educational content 以下资源对于了解有关微生物组分析和生物信息学的更多信息很有用: 应用生物信息学导论 An Introduction to Applied Bioinformatics http…

三维模型OBJ格式轻量化压缩处理的数据质量提升方法分析

三维模型OBJ格式轻量化压缩处理的数据质量提升方法分析 在三维模型的OBJ格式轻量化压缩处理过程中,除了减小文件大小和提高加载速度之外,我们也需要考虑如何提升数据质量。以下是几种常见的方法: 1、优化顶点数据:顶点数据是三维…

三层架构与MVC模式区别

三层架构 三层即 视图层、业务逻辑层、持久层(数据访问层) MVC模式 MVC 即 Model(模型),View(视图),Controller(控制控制器)。 --------------------------…

fastapi集成elastic-apm,实现性能监控

fastapi集成elastic-apm,实现性能监控 本文适用于 Starlette/FastAPIStarlette/FastAPI SupportInstallationSetupFastAPIUsagePerformance metricsIgnoring specific routes Supported Starlette and Python versions 具体使用示例官网的配置项介绍各语言框架集成e…

33、在SpringBoot项目添加Web组件(Servlet、Filter 和 Listener) 的三种方法

通过Spring Bean 来添加 Servlet、Filter 和 Listener ★ 添加Web组件(Servlet、Filter、Listener)的三种方式: - 使用Spring Bean添加Servlet、Filter或Listener。- 使用XxxRegistrationBean手动添加Servlet、Filter或Listener。- 使用Clas…

Spring Cloud Alibaba-Sentinel--服务容错

1 高并发带来的问题 在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络 原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会出…

kafka--技术文档--架构体系

架构体系 Kafka的架构体系包括以下几个部分: Producer. 消息生产者,就是向Kafka broker发送消息的客户端。Broker. 一台Kafka服务器就是一个Broker。一个集群由多个Broker组成。一个Broker可以容纳多个Topic。Topic. 可以理解为一个队列,一…

从零开始的Hadoop学习(二)| Hadoop介绍、优势、组成、HDFS架构

1. Hadoop 是什么 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。主要解决,海量数据的存储和海量数据的分析计算问题。广义上来说,Hadoop通常是指一个更广泛的概念—Hadoop生态圈。 2. Hadoop 的优势 高可靠性:Hadoop底层维护多…

js reverse实现数据的倒序

2023.8.25今天我学习了如何在数组顺序进行倒序排列,如: 原数组为: 我们只需要对数组使用reverse()方法 let demo [{id: 1, name: 一号},{id: 2, name: 二号},{id: 3, name: 三号},]demo.reverse()console.log(demo) 扩展: 当我…

SV-9032 机架式网络采播器

SV-9032 机架式网络采播器 一、描述 18123651365微信 SV-9032是我司的一款机架式网络采播器,具有10/100M以太网接口,后面板上有两路线路输入接口,可以直接连接音源输出设备,将采集音源编码后发送至网络播放终端上。同时还具有三…

Python Scrapy网络爬虫框架从入门到实战

Python Scrapy是一个强大的网络爬虫框架,它提供了丰富的功能和灵活的扩展性,使得爬取网页数据变得简单高效。本文将介绍Scrapy框架的基本概念、用法和实际案例,帮助你快速上手和应用Scrapy进行数据抓取。 Scrapy是一个基于Python的开源网络爬…

淘宝免费爬虫数据 商品详情数据 商品销售额销量API

场景:一个宽敞明亮的办公室,一位公司高管坐在办公桌前。 高管(自言自语):淘宝,这个平台上商品真是琳琅满目,应该有不少销售数据吧。我该怎么利用这些数据呢? 突然,房间…

vue 后台管理系统登录 记住密码 功能(Cookies实现)

安装插件 import Cookies from js-cookie 组件引入 import Cookies from js-cookie; 存值: Cookies.set(username, state.account, { expires: 30 }); // username 存的值的名字,state.account 存的值 expires 存储的时间,30天Cookies…

Android开发之性能优化工具Profiler

前言 性能优化问题,在我们开发时都会遇到,但是在小厂和对自己要求不严格的情况下,我都很少去做性能优化; 在性能优化上,基本大家都是通过自己的开发经验和性能分析工具来发现问题,今天给大家分享一下小编最…

学习中ChatGPT的17种用法

ChatGPT本质上是一个聊天工具,旧金山的人工智能企业OpenAI于2022年11月正式推出ChatGPT。那么,ChatGPT与其他人工智能产品相比有什么特殊呢? 它除了可以回答结构性的问题,例如语法修正、翻译和查找答案之外。最关键的是它能够去解…

CSDN编程题-每日一练(2023-08-25)

CSDN编程题-每日一练(2023-08-25) 一、题目名称:影分身二、题目名称:小鱼的航程(改进版)三、题目名称:排查网络故障 一、题目名称:影分身 时间限制:1000ms内存限制:256M 题目描述&am…

cadence virtuoso标准库不见了

问题描述,启动virtuoso后发现标准库(如analogLib、basic、ahdLib)不见了 解决办法: 在启动路径下找到cds.lib文件输入下图代码(注意将/opt/cadence/IC617换成自己的cadence安装路径) 保存cds.lib文件后&a…