AI + Milvus:将时尚应用搭建进行到底

news2025/1/21 7:22:41

在上一篇文章中,我们学习了如何利用人工智能技术(例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型)寻找与自己穿搭风格相似的明星。在这篇文章中,我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改,获得更详细和准确的结果,文末附赠彩蛋。

注:试用此项目应用,需要点击下载并使用 notebook

01.回顾前文

在深入探讨前,先简要回顾一下前一篇教程文章。

导入所需的图像处理库和工具

首先导入所有必要的图像处理库,包括用于特征提取的 torchtransformers 中的 segformer 对象、matplotlibtorchvision 中的 Resizemasks_to_boxescrop 等。

import torch
from torch import nn, tensor
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from torchvision.transforms import Resize
import torchvision.transforms as T
from torchvision.ops import masks_to_boxes
from torchvision.transforms.functional import crop

预处理明星照片

在导入所有必要的图像处理库和工具后,就可以开始处理图像。以下三个函数 get_segmentationget_maskscrop_images 用于分割并裁剪图片中的时尚单品,以供后续使用。

import torch
def get_segmentation(extractor, model, image):
    inputs = extractor(images=image, return_tensors="pt")

    outputs = model(**inputs)
    logits = outputs.logits.cpu()

    upsampled_logits = nn.functional.interpolate(
        logits,
        size=image.size[::-1],
        mode="bilinear",
        align_corners=False,
    )

    pred_seg = upsampled_logits.argmax(dim=1)[0]
    return pred_seg

# 返回两个 masks(tensor)列表和 obj_ids(int)
# 来自 Hugging Face 的 mattmdjaga/segformer_b2_clothes 模型
def get_masks(segmentation):
    obj_ids = torch.unique(segmentation)
    obj_ids = obj_ids[1:]
    masks = segmentation == obj_ids[:, None, None]
    return masks, obj_ids

def crop_images(masks, obj_ids, img):
    boxes = masks_to_boxes(masks)
    crop_boxes = []
    for box in boxes:
        crop_box = tensor([box[0], box[1], box[2]-box[0], box[3]-box[1]])
        crop_boxes.append(crop_box)
    preprocess = T.Compose([
        T.Resize(size=(256, 256)),
        T.ToTensor()
    ])
    cropped_images = {}
    for i in range(len(crop_boxes)):
        crop_box = crop_boxes[i]
        cropped = crop(img, crop_box[1].item(), crop_box[0].item(), crop_box[3].item(), crop_box[2].item())
        cropped_images[obj_ids[i].item()] = preprocess(cropped)
    return cropped_images

将图像数据存储到向量数据库中

选择开源向量数据库 Milvus 来存储图像数据。开始前,需要先解压包含照片的 zip 文件,并在 notebook 相同的根目录中创建照片文件夹。完成后,可以运行以下代码来将图像数据存储在 Milvus 中。

import os
image_paths = []
for celeb in os.listdir("./photos"):
    for image in os.listdir(f"./photos/{celeb}/"):
        image_paths.append(f"./photos/{celeb}/{image}")

from milvus import default_server
from pymilvus import utility, connections
default_server.start()
connections.connect(host="127.0.0.1", port=default_server.listen_port)
DIMENSION = 2048
BATCH_SIZE = 128
COLLECTION_NAME = "fashion"
TOP_K = 3
from pymilvus import FieldSchema, CollectionSchema, Collection, DataType

fields = [
    FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
    FieldSchema(name='filepath', dtype=DataType.VARCHAR, max_length=200),
    FieldSchema(name="name", dtype=DataType.VARCHAR, max_length=200),
    FieldSchema(name="seg_id", dtype=DataType.INT64),
    FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, dim=DIMENSION)
]

schema = CollectionSchema(fields=fields)
collection = Collection(name=COLLECTION_NAME, schema=schema)
index_params = {
    "index_type": "IVF_FLAT",
    "metric_type": "L2",
    "params": {"nlist": 128},
}
collection.create_index(field_name="embedding", index_params=index_params)
collection.load()

接着,运行以下代码,使用来自 Hugging Face 的 Nvidia ResNet 50 模型生成 embedding 向量。

# 如遇 SSL 证书 URL 错误,请在导入 resnet50 模型前运行此步骤
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 并删除最后一层模型输出
embeddings_model = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
embeddings_model = torch.nn.Sequential(*(list(embeddings_model.children())[:-1]))
embeddings_model.eval()

以下函数定义了如何将图像转换为向量并插入到 Milvus 向量数据库中。代码会循环遍历所有图像。(注意:如果需要开启 Milvus 全新特性动态 Schema,需要修改代码。)

def embed_insert(data, collection, model):
    with torch.no_grad():
        output = model(torch.stack(data[0])).squeeze()
        collection.insert([data[1], data[2], data[3], output.tolist()])
from PIL import Image
data_batch = [[], [], [], []]

for path in image_paths:
    image = Image.open(path)
    path_split = path.split("/")
    name = " ".join(path_split[2].split("_"))
    segmentation = get_segmentation(extractor, model, image)
    masks, ids = get_masks(segmentation)
    cropped_images = crop_images(masks, ids, image)for key, image in cropped_images.items():
        data_batch[0].append(image)
        data_batch[1].append(path)
        data_batch[2].append(name)
        data_batch[3].append(key)
        if len(data_batch[0]) % BATCH_SIZE == 0:
            embed_insert(data_batch, collection, embeddings_model)
            data_batch = [[], [], [], []]

if len(data_batch[0]) != 0:
    embed_insert(data_batch, collection, embeddings_model)

collection.flush()

查询向量数据库

以下代码演示了如何使用输入图像查询 Milvus 向量数据库,以检索和上传衣服图像最相似的的前三个结果。

def embed_search_images(data, model):
    with torch.no_grad():
    output = model(torch.stack(data))
    if len(output) > 1:
        return output.squeeze().tolist()
    else:
        return torch.flatten(output, start_dim=1).tolist()
# data_batch[0]是 tensor 列表
# data_batch[1]是图像文件的文件路径(字符串)
# data_batch[2]是图像中人物的名称列表(字符串)
# data_batch[3]是分割键值列表(int)
data_batch = [[], [], [], []]

search_paths = ["./photos/Taylor_Swift/Taylor_Swift_3.jpg", "./photos/Taylor_Swift/Taylor_Swift_8.jpg"]

for path in search_paths:
    image = Image.open(path)
    path_split = path.split("/")
    name = " ".join(path_split[2].split("_"))
    segmentation = get_segmentation(extractor, model, image)
    masks, ids = get_masks(segmentation)
    cropped_images = crop_images(masks, ids, image)
    for key, image in cropped_images.items():
        data_batch[0].append(image)
        data_batch[1].append(path)
        data_batch[2].append(name)
        data_batch[3].append(key)

embeds = embed_search_images(data_batch[0], embeddings_model)
import time
start = time.time()
res = collection.search(embeds,
    anns_field='embedding',
    param={"metric_type": "L2",
        "params": {"nprobe": 10}},
    limit=TOP_K,
    output_fields=['filepath'])
finish = time.time()
print(finish - start)
for index, result in enumerate(res):
    print(index)
    print(result)

02.匹配更多风格:标示每张图像中的时尚单品

除了直接使用上述代码,查找与你着装风格最相似的 3 位明星以外,我们还可以稍微修改一下代码,拓展项目的应用场景。可以修改代码获取如下所示,不包含边界框的图像。

alt

接下来,将为大家介绍如何修改上述代码寻找更多匹配的穿衣风格。

导入所需的图像处理库和工具

同样,需要先导入所有必要的图像处理库。如果已经完成导入,请跳过此步骤。

import torch
from torch import nn, tensor
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from torchvision.transforms import Resize
import torchvision.transforms as T
from torchvision.ops import masks_to_boxes
from torchvision.transforms.functional import crop

预处理图像

这个步骤涉及三个函数:get_segmentationget_maskscrop_images

无需修改 get_segmentation 函数部分的代码。

对于 get_masks 函数,只需要获取与 wanted 列表中的分割 ID 相对应的分割图像即可。

crop_image 函数做出更改。在前一篇文的教程中,此函数返回裁剪图像的列表。这里,我们进行一些调整,使函返回三个对象:裁剪图像对应的 embedding 向量、边界框在原始图像上的坐标列表,以及分割 ID 列表。这一改动将转化 embedding 向量的步骤提前了。

wanted = [1, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17]
def get_segmentation(image):
    inputs = extractor(images=image, return_tensors="pt")

    outputs = segmentation_model(**inputs)
    logits = outputs.logits.cpu()

    upsampled_logits = nn.functional.interpolate(
        logits,
        size=image.size[::-1],
        mode="bilinear",
        align_corners=False,
    )

    pred_seg = upsampled_logits.argmax(dim=1)[0]
    return pred_seg

# returns two lists masks (tensor) and obj_ids (int)
# "mattmdjaga/segformer_b2_clothes" from hugging face
def get_masks(segmentation):
    obj_ids = torch.unique(segmentation)
    obj_ids = obj_ids[1:]
    wanted_ids = [x.item() for x in obj_ids if x in wanted]
    wanted_ids = torch.Tensor(wanted_ids)
    masks = segmentation == wanted_ids[:, None, None]
    return masks, obj_ids

def crop_images(masks, obj_ids, img):
    boxes = masks_to_boxes(masks)
    crop_boxes = []
    for box in boxes:
        crop_box = tensor([box[0], box[1], box[2]-box[0], box[3]-box[1]])
        crop_boxes.append(crop_box)
    preprocess = T.Compose([
        T.Resize(size=(256, 256)),
        T.ToTensor()
    ])
    cropped_images = []
    seg_ids = []
    for i in range(len(crop_boxes)):
        crop_box = crop_boxes[i]
        cropped = crop(img, crop_box[1].item(), crop_box[0].item(), crop_box[3].item(), crop_box[2].item())
        cropped_images.append(preprocess(cropped))
        seg_ids.append(obj_ids[i].item())
    with torch.no_grad():
        embeddings = embeddings_model(torch.stack(cropped_images)).squeeze().tolist()
    return embeddings, boxes.tolist(), seg_ids

有了图像数据之后,就可以加载数据了。这一步骤需要使用到批量插入功能,上篇文章的教程中也有涉及,但不同点在于,本文的教程中将数据作为 dictionary 列表一次性插入。这种插入方式更简洁,同时还允许我们在插入数据时动态新增 Schema 字段。

for path in image_paths:
    image = Image.open(path)
    path_split = path.split("/")
    name = " ".join(path_split[2].split("_"))
    segmentation = get_segmentation(image)
    masks, ids = get_masks(segmentation)
    embeddings, crop_corners, seg_ids = crop_images(masks, ids, image)
    inserts = [{"embedding": embeddings[x], "seg_id": seg_ids[x], "name": name, "filepath": path, "crop_corner": crop_corners[x]} for x in range(len(embeddings))]
    collection.insert(inserts)
    collection.flush()

查询向量数据库

现在可以开始在向量数据库 Milvus 中查询数据了。本文与上篇文章的教程有以下几点区别:

  • 将一张图像中匹配的时尚单品数量限制到 5 件。

  • 指定查询返回最相似的 3 张图像。

  • 添加函数获取图片的色彩图。

随后,在 matplotlib 中设置 figures 和 axes ,代码会循环遍历所有图像,将上文的 3 个函数应用到所有图像上,以获取分割结果和边界框。

查询数据时,可以根据每张图像中匹配的时尚单品数量来获得最相似的 3 张图像。

最终返回的结果图像中会带有标示出匹配单品的边界框。

from pprint import pprint
from PIL import ImageDraw
from collections import Counter
import matplotlib.patches as patches

LIMIT = 5 # 每张图像中匹配的时尚单品件数
CLOSEST = 3 # 返回的最相似图像数量。CLOSEST <= Limit

search_paths = ["./photos/Taylor_Swift/Taylor_Swift_2.jpg", "./photos/Jenna_Ortega/Jenna_Ortega_6.jpg"] # Images to search fordef get_cmap(n, name='hsv'):
    '''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
    RGB color; the keyword argument name must be a standard mpl colormap name.
    Sourced from <https://stackoverflow.com/questions/14720331/how-to-generate-random-colors-in-matplotlib>'''return plt.cm.get_cmap(name, n)

# 创建结果 subplot
f, axarr = plt.subplots(max(len(search_paths), 2), CLOSEST + 1)

for search_i, path in enumerate(search_paths):
    # Generate crops and embeddings for all items found
    image = Image.open(path)
    segmentation = get_segmentation(image)
    masks, ids = get_masks(segmentation)
    embeddings, crop_corners, _ = crop_images(masks, ids, image)

# 生成色彩图
    cmap = get_cmap(len(crop_corners))

    # Display the first box with image being searched for
    axarr[search_i][0].imshow(image)
    axarr[search_i][0].set_title('Search Image')
    axarr[search_i][0].axis('off')
    for i, (x0, y0, x1, y1) in enumerate(crop_corners):
        rect = patches.Rectangle((x0, y0), x1-x0, y1-y0, linewidth=1, edgecolor=cmap(i), facecolor='none')
        axarr[search_i][0].add_patch(rect)

    # 查询向量数据库
    start = time.time()
    res = collection.search(embeddings,
        anns_field='embedding',
        param={"metric_type": "L2",
        "params": {"nprobe": 10}, "offset": 0},
        limit=LIMIT,
        output_fields=['filepath', 'crop_corner'])
    finish = time.time()

    print("Total Search Time: ", finish - start)

    # 根据位置给查询结果增加不同的权重
    filepaths = []
    for hits in res:
        seen = set()
        for i, hit in enumerate(hits):
            if hit.entity.get("filepath") not in seen:
                seen.add(hit.entity.get("filepath"))
                filepaths.extend([hit.entity.get("filepath") for _ in range(len(hits) - i)])
    # 查找排名最高的图像
    counts = Counter(filepaths)
    most_common = [path for path, _ in counts.most_common(CLOSEST)]
    # 提取每张图像中与查询图像相关的时尚单品
    matches = {}
    for i, hits in enumerate(res):
        matches[i] = {}
        tracker = set(most_common)
        for hit in hits:
            if hit.entity.get("filepath") in tracker:
                matches[i][hit.entity.get("filepath")] = hit.entity.get("crop_corner")
                tracker.remove( hit.entity.get("filepath"))
        # 返回最相似图像:
    # 返回与查询图像临近的图像
        image = Image.open(res_path)
        axarr[search_i][res_i+1].imshow(image)
        axarr[search_i][res_i+1].set_title(" ".join(res_path.split("/")[2].split("_")))
        axarr[search_i][res_i+1].axis('off')
# 为匹配单品添加边界框
        if res_path in value:
            x0, y0, x1, y1 = value[res_path]
            rect = patches.Rectangle((x0, y0), x1-x0, y1-y0, linewidth=1, edgecolor=cmap(key), facecolor='none')
            axarr[search_i][res_i+1].add_patch(rect)

运行上述步骤后,结果如下所示:

alt

03.项目后续:探索更多应用场景

欢迎大家基于本项目拓展更多、更丰富的应用场景,例如:

  • 进一步延伸对比功能,例如将不同的单品归类到一起。同样,也可以上传更多图像到数据库中,丰富查询结果。

  • 将本项目转变为时尚探测仪或者时尚推荐系统。例如,将明星图像替换成可购买的衣服图像。这样一来,用户上传照片后,可以查询与他的衣服风格相似的其他衣服。

  • 还可以基于本项目搭建一个穿搭生成系统,很多方法都可以实现这个应用,但这个应用的搭建相对而言更有难度!本文提供了一种思路,系统可以根据用户上传的多张照片相应推荐穿搭。这里需要用到生成式图像模型,从而提供穿搭建议。

总之,不要限制你的想象力,搭建更丰富的应用。Milvus 之类的向量数据库为相似性搜索应用提供了无限可能。

04.总结

本文教程中,我们进一步拓展了时尚 AI 项目的应用场景。

本次教程使用了 Milvus 全新的 动态 Schema 功能,筛选了分割 ID,在返回图像中保留了边界框。同时,我们在查询中指定 Milvus 根据每张图像中匹配的时尚单品件数返回最相似的 3 张图像。Milvus 全新的动态 Schema 功能支持在上传数据时添加新的字段,改变了我们批量上传数据的方式。使用这个功能后,在上传数据时,无需改动 Schema 即可添加裁剪。在图像预处理步骤中,剔除了一些识别到的非着装类元素。同时,本教程保留了边界框,将转化向量的步骤提前至了裁剪图片的步骤。

当然,通过进一步调整代码,我们还可以搭建更多相关应用,例如:时尚推荐系统、帮助用户搭配着装的系统,甚至是生成式的时尚 AI 应用!

🌟「寻找 AIGC 时代的 CVP 实践之星」 专题活动即将启动!

Zilliz 将联合国内头部大模型厂商一同甄选应用场景, 由双方提供向量数据库与大模型顶级技术专家为用户赋能,一同打磨应用,提升落地效果,赋能业务本身。

如果你的应用也适合 CVP 框架,且正为应用落地和实际效果发愁,可直接申请参与活动,获得最专业的帮助和指导!联系邮箱为 business@zilliz.com。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/925311.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java中的枚举类,为什么要用枚举类以及使用注意事项和细节

要求&#xff1a;创建季节对象 分析&#xff1a;一年中只有4个季节&#xff0c;因此就不能让随意创建对象了 原本方法&#xff1a; 私有化构造器&#xff0c;避免了随意创建对象不提供setXxx方法&#xff0c;避免了随意赋值&#xff0c;因为枚举对象值通常为只读在本类中直接…

人工智能如何颠覆和改变信息安全格局

当谈及网络信息安全领域&#xff0c;人工智能&#xff08;AI&#xff09;正扮演着关键的角色。其作用是分析庞大的风险数据&#xff0c;以及企业信息系统中不同威胁之间的关联&#xff0c;从而识别出全新类型的攻击方式。这一过程的成果为各类网络安全团队提供了重要情报&#…

ModaHub魔搭社区:WinPlan经营大脑预算编制

目录 WinPlan经营大脑预算编制介绍 WinPlan经营大脑预算编制模版 WinPlan经营大脑预算模版管理 WinPlan经营大脑预算数据录入 WinPlan经营大脑预算编制介绍 预算编制时面向企业经营管理场景,创建各个业务单位的目标,包括销售目标、财务目标、人事目标等,实现各个业务单…

spring之Spring最佳实践与设计模式

Spring最佳实践与设计模式 Spring最佳实践与设计模式 摘要引言词汇解释详细介绍Spring最佳实践1. 使用依赖注入&#xff08;Dependency Injection&#xff09;2. 使用Spring Boot自动配置3. 使用日志框架 注意事项结合设计模式提升代码质量1. 单例模式2. 工厂模式 注意事项 总结…

基于Java+SpringBoot+vue前后端分离人口老龄化社区服务与管理平台设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

基于Java+SpringBoot+vue前后端分离宠物领养系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

安全技术和防火墙——iptables

安全技术&#xff1a; 1.入侵检测系统&#xff1a;不阻断任何网络访问&#xff0c;量化、定位来之内外网络的威胁情况&#xff0c;主要以提供报警和事后监督为主&#xff0c;提供有针对性的指导措施和安全决策依据&#xff0c;类似监控系统&#xff0c;一般采用旁路部署的方式…

文件服务器实现方式汇总

hello&#xff0c;伙伴们&#xff0c;大家好&#xff0c;今天这一期shigen来给大家推荐几款可以一键实现文件浏览器的工具&#xff0c;让你轻松的实现文件服务器和内网的文件传输、预览。 基于node 本次推荐的是http-server&#xff0c; 它的githuab地址是&#xff1a;http-s…

8086汇编语言寄存器清零学习

mov ax, 0 这样应清零了&#xff1b; sub ax, ax 这样也清了&#xff1b; xor ax, ax 这样也清零了&#xff1b;自己跟自己异或&#xff0c;异或是同则结果为0、不同结果为1&#xff1b;自己和自己&#xff0c;每一位都是相同的&#xff0c;异或后结果为0&#xff1b; and …

基于CentOS7.9安装docker服务,配置镜像加速器

目录 一、安装docker服务 二、配置镜像加速器 三、下载系统镜像&#xff08;Ubuntu、 centos &#xff09; 四、基于下载的镜像创建两个容器&#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母 &#xff09; 五、容器的启动、 停止及重启操作 六、查看正…

基于Java+SpringBoot+vue前后端分离林业产品推荐系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

Spring之微服务架构与Spring Cloud

微服务架构与Spring Cloud 微服务架构与Spring Cloud 摘要引言词汇解释详细介绍微服务架构Spring Cloud核心组件示例代码&#xff1a;注释&#xff1a; 注意事项理解微服务架构的优势 详细介绍什么是微服务架构&#xff1f;微服务架构的优势1. 可扩展性&#xff08;Scalability…

Win7安装新版本anaconda出现Failed to extract packages解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

CAD泰森多边形框架3D插件

插件介绍 CAD泰森多边形框架3D插件可用于在AutoCAD软件内生成三维Voronoi框架结构实体模型&#xff0c;适用于多孔Voronoi科研论文渲染绘图、Voronoi框架有限元建模、Voronoi空间结构优化等方面的应用。 使用说明 插件可设置生成的几何尺寸、晶格尺寸及边框直径等信息。 插…

基于Java+SpringBoot+vue前后端分离华强北商城二手手机管理系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

让大数据平台数据安全可见-行云管家

数字化经济在快速发展&#xff0c;大数据时代已经到来&#xff0c;大数据已经成为企业和政府决策的重要依据。然而大数据行业快速发展所带来的一系列安全问题也继续解决&#xff0c;例如数据安全更难保障&#xff0c;例如认证体系不完善等等。为此行云管家推出了大数据平台数据…

开源跨境电商ERP实战经验分享,避免坑点

开源跨境电商ERP系统是当今电商行业的利器&#xff0c;许多企业已经意识到了它在运营管理中的重要性。在本文中&#xff0c;作为该领域的专家&#xff0c;我将分享一些实战经验&#xff0c;帮助您避免在使用开源跨境电商ERP过程中可能遇到的坑点和挑战。 解析开源跨境电商ERP的…

操作系统期末考试复习——简答题总结

最近考研在复习OS&#xff0c;顺便把大二期末考试的简答题整理了一下~ 1、操作系统的定义 “操作系统&#xff08;operating system&#xff0c;简称OS&#xff09;是管理计算机硬件与软件资源的计算机程序 2、操作系统的基本类型及特征 批处理操作系统、分时操作系统、实时…

gdb 条件断点

条件断点&#xff0c;顾名思义就是有条件才会触发的断点&#xff0c;一般设置此类断点形如&#xff1a;b xxx if xxx&#xff0c;如&#xff1a; 要触发此断点则需要 is_created 0。打完断点我们也可以用 info b 查看一下当前已经设置的断点信息&#xff0c;如&#xff1a; 断…

02-Numpy基础-ndarray

NumPy&#xff08;Numerical Python的简称&#xff09;是Python数值计算最重要的基础包。 NumPy的部分功能如下&#xff1a; ndarray&#xff0c;一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。用于对整组数据进行快速运算的标准数学函数&#xff08;无需编…