Mysql InnoDB B+Tree是什么?

news2025/1/21 7:11:18

“mysql中常用的数据库搜索引擎InnoDB,其索引通过B+Tree的方式进行构建。”

实在想不起来B+Tree是怎么一回事了。以点带线,将涉及到的数据结构一起复习一下。

文章目录

  • 数据结构定义
    • 红黑树
      • 定义
      • 使命
    • BTree
      • 定义
      • 使命
    • B+Tree
      • 定义
    • InnoDB B+Tree
  • 旋转与调整
    • 二叉排序树
      • 插入
      • 删除
    • 平衡二叉树
      • 插入
    • 删除
    • 红黑树
      • 插入
      • 删除
    • m阶BTree
      • 插入
      • 删除
    • m 阶B+Tree
      • 插入
      • 删除
  • 参考内容

数据结构定义

数据结构
定义
二叉树每个节点最多有两个子树
二叉排序树又叫二叉搜索树。在二叉树的基础上,递归定义 任意子树根节点大于其左子树最大值小于右子树最小值. 左<根<右
平衡二叉树在二叉排序树的基础上, 递归定义 任意节点 左右子树的高度差≤1.
红黑树在二叉排序树的基础上,递归定义 见下方
BTreeB-Tree 同一个东西。见下方
B+Tree见下方

如果插入的是有序序列, 二叉排序树的效率降低为O(n). 所以推出 平衡二叉树

红黑树

定义

  1. 左中右: 前提是一棵二叉搜索树(左<中<右)
  2. 根、叶黑: 根节点和叶子结点都是黑色
  3. 不红红: 不存在两个红色节点有直接父子关系
  4. 黑路同: 任意节点到所有叶子节点经过的黑色节点数相同

使命

红黑树并不是在平衡二叉树的基础上定义的。

由于平衡二叉树左右子树高度差≤1,要求过于严格。虽然查询效率较高,但插入、删除时,调整频繁, 因此引入红黑树。

由于不红红和黑路同的性质可以推断出:红黑树左右子树最长路径节点数不超过最短路径的2倍。

相对于平衡二叉树,插入、删除效率有所提升。

BTree

BTree 就是多路查找树(一个节点内可以有多个元素),每个元素都有左右子树。 2阶BTree, 退化成平衡二叉树

定义

  1. 有序 1. 结点元素内有序 2. 元素的左子树都小于它,右子树都大于它

  2. 平衡 所有的叶结点都在同一层

  3. 节点限制 m阶BTree

    根节点至少有1个元素,2个分支

    其他节点 至少有(m+1)/2个分支, (m-1)/2个元素(左右间隙肯定要比元素数多1)

    所有节点元素数<m, 分支数≤m。 所有叶子节点在同一层上

使命

数据是存储在磁盘上,每次将节点读入内存,就需要一次IO操作,IO操作是比较耗时。树的高度,限制了数据的查找效率。

一次IO读取连续地址的多个字节和读取一个字节几乎没有什么差别。

通过增加节点元素数,降低树的高度 就成为了必然的选择。

一个节点可以有多个元素 每个元素左右间隙指向后续节点。将左右间隙视为左右子树。

B+Tree

定义

从BTree基础上发展而来,

  1. 非叶子结点直接存储索引,>左子树最大值,<=右子树最小值
  2. 叶结点包含全部关键字及指向相应记录的指针,非叶结点只作索引
  3. 所有节点元素数<m(也有地方说是<=m), 分支数≤m
  4. 每一个叶子节点都有指向后续叶子节点的指针

请添加图片描述

InnoDB B+Tree

对经典B+Tree进行改造,除了记录叶子节点的头部位置,后续叶子节点外, 记录了前驱节点。提升了中序遍历和范围查找效率。

旋转与调整

二叉树就是为了阐述的需要,没有实际应用的意义,不存在调整的问题。

二叉排序树

插入

与当前节点比较, 小于当前节点在左子树进行比较 大于当前节点在右子树进行比较。
最后插入到叶子节点上。

Insert 4 2 3 1

请添加图片描述

删除

通过比较查找定位到待删除的节点

叶子节点,直接删除

只有左子树或只有右子树 删除后,让子树占据其位置

左右子树都有 需要进行转化 让其中序遍历前驱节点或后继结点占据其位置,转化为删除中序遍历前驱节点或后继结点。转化为前两种情况。

演示一下删除节点50的过程

请添加图片描述

  1. 节点50左右子树都有,使用中序遍历定位后继节点。将节点65放到节点50的位置
  2. 待删除的节点只有右子树, 将右子树直接挂上

平衡二叉树

插入

通过递归进行节点比较,插入到叶子节点。 然后判定是否出现左右子树高度差>1的情况。
没有出现, 插入结束。否则根据下面四种情况进行调整

类型调整方式
LL爷爷节点顺时针旋转(右旋)
RR爷爷节点逆时针旋转(左旋)
LR父节点逆时针旋转,爷爷节点顺时针旋转(右旋)
RL父节点顺时针旋转,爷爷节点逆时针旋转(左旋)

平衡树调整的四种类型

所有的旋转都是绕着直接子孩子进行的旋转。 调整之后, 高度-1. 调整完成。

删除

分为两个过程

  1. 删除 删除方法与二叉搜索树相同
  2. 调整 找到层级最低(靠近叶子节点)失衡的节点C,然后确定类型和调整方式
    找到C层级更深的子树A.
    找到A层级更深的子树B.
    AB对应上面的LL、RR、LR、RL四种情况,然后进行调整。

这里面有一种特殊情况: B不存在(A的左右子树深度一致)
如果是L型(A是左子树),进行顺时针旋转.如果是R型,进行逆时针旋转。

A存在B不存在

红黑树

插入

红黑树的插入容易违反:根叶黑和不红红的特性。

新插入的节点定义为红色

分下面几种情况进行讨论:

1. 新插入节点是根节点: 直接变黑 调整完成
2. 新插入节点的父节点是黑节点: 不需要调整
3. 新插入节点的父节点是红节点: 违反不红红的特点,
 参照下面的方法进行调整。

2.插入的是红色节点, 父亲是红色节点
如果叔叔是黑色,违反黑路同;
如果叔叔为红色,不能有子节点(红色违反不红红,黑色违反黑路同)

叔叔节点
调整方式
R叔叔节点R->B, 父亲节点R->B,爷爷节点B->R, 从爷爷开始继续调整(不违反根叶黑、不红红就完成)
不存在(或者为黑色节点)插入节点、父节点、爷爷节点 根据LL\RR\LR\RL进行旋转调整

叔叔节点不存在四种形态

变换后,设置新根节点(三个节点中)为黑色,其他2个节点为红色.

来一个插入演示。
Insert 34、23、15、10、13、14、35、36.

红黑树插入过程

删除

红黑树删除容易破坏黑路同的性质。

通过节点比较 定位到要删除的节点

与二叉搜索树一样:如果左右子树都有 转化为中序遍历直接前驱或者直接后继(将节点内容用直接前驱或直接后继的值进行代替), 转化为对叶子节点或者单子树的删除。

叶子节点可能为红或者黑;
单子树只可能为黑色节点下面挂一个红色节点。

待删除节点为红色叶子节点,直接删除
待删除节点有单子树,将红色节点挂到子树上,变成黑色。

待删除节点为黑色叶子节点较为复杂:

兄弟节点颜色兄弟节点有红孩调整方式
B待删除节点变成双黑节点 根据其类型参照下面表格进行旋转变色。
B兄弟变红, 双黑节点(可以理解为-1黑节点)上移到父节点
R兄父变色, 然后父节点绕兄弟节点旋转 双黑节点继续调整

双黑节点碰到红色节点 Red->Black 调整结束。
双黑碰到根节点, 直接变成黑节点 调整结束。
双黑节点碰到兄弟节点是null,调整结束。

删除节点为黑色节点,兄弟节点为黑色节点,兄弟至少有一个红孩

表格中的孩子指的是:兄弟的孩子,父节点指的是:当前节点的父节点(当然也是兄弟父节点)

变色和旋转情况如下:

兄弟
兄弟左孩子
兄弟右孩子
类型变色与旋转
左子树R-LL左孩子R->B, 兄弟节点变成父节点颜色, 父节点变黑。 然后进行旋转
右子树-RRR右孩子R->B, 兄弟节点变成父节点颜色, 父节点变黑。 然后进行旋转
左子树B(或者null)RLR右孩子变成父节点颜色, 父节点变黑。 然后进行旋转
右子树R-RL左孩子变成父节点颜色,父节点变黑。 然后进行旋转

删除顺序:
17 15 13 34 25 23 18 27 37 10 9 6

红黑树删除过程
红黑树删除过程

m阶BTree

插入

所有直接的插入都在叶子节点进行(从根节点定位到叶子节点);

1. 只有一个元素作为根节点
2. 从根部进行比较, 跳转到叶子节点后, 进行插入。 
如果节点元素数=m, 需要进行分裂。 m/2位置元素上移, 以该元素作为分界点,将一个节点拆分为两个节点。然后将比较节点(m/2位置元素)移动到父节点。 继续判断父节点是否发生上溢, 继续进行调整。

m = 3
插入序列:
27 14 18 36 70 3 17 20 23 34 45 53 58 84

请添加图片描述

删除

  1. 定位到要删除的元素,如果发生在非叶子节点: 将中序遍历直接前驱或直接后继进行替换。 修改为删除直接前驱或直接后继节点

删除后,节点元素数>= (m-1)/2,结束.
如果<(m-1)/2,寻找左兄弟节点或者右兄弟节点进行借元素。
寻找左兄弟借元素 ,左兄弟 最大值上位, 父节点里面的父元素移动到节点左侧。
寻找右兄弟借元素 ,右兄弟 最小值上位, 父节点里面的父元素移动到节点右侧。

如果左右兄弟都不够借, 就与左兄弟或右兄弟合并。 与左兄弟合并的时候, 父节点的父元素下移到左兄弟,然后当前节点所有元素合并到左兄弟节点右侧。 此时, 如果父节点发生向下溢出,对父节点继续调整, 否则,调整结束。

m=3 最小节点数 (3-1)/2 == 1 ,不存在向下溢出的情况了, 这里使用m=5.进行演示

请添加图片描述

84 36 90 58 70 53 34 27 45 21 20 23 17

m 阶B+Tree

B+Tree所有元素都保存在叶子节点
插入都发生在叶子节点,进行分裂时, 分裂点左侧断裂, 向上copy一份中间元素。
左侧指向的索引节点小于当前索引值,右侧>=当前索引值

叶子节点有指向中序遍历后续叶子节点的指针。

插入

m = 5.

插入序列:
27 14 18 36 70 3 17 20 23 34 45 53 58 84 90

B+Tree插入

删除

删除非索引节点时,直接删除。
发生向下溢出,左右可以借的话, 进行左右借位。借位后,索引修改为借到元素,并将该元素合并过去
如果不够借,进行作用合并,注意索引的调整。 以及可能发生的父节点向下溢出。

删除序列:

53 36 34 20 58 70 20 84 14 27 45 18

B+Tree删除

参考内容

B站蓝不过海呀数据结构教学视频
旧金山大学数据结构可视化工具

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2279704.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker 使用远程镜像启动一个容器

使用前提&#xff1a; 首先你得安装docker,其次你得拥有一个远程镜像 docker run --name io_11281009 --rm -it -p 2233:22 -v .:/root/py -e ed25519_rootAAAAC3NzaC1lZDI1********Oy7zR7l7aUniR2rul ghcr.lizzie.fun/fj0r/io srv对上述命令解释&#xff1a; 1.docker run:…

吴恩达深度学习——神经网络介绍

文章内容来自BV11H4y1F7uH&#xff0c;仅为个人学习所用。 文章目录 什么是神经网络引入神经网络神经元激活函数ReLU隐藏单元 用神经网络进行监督学习监督学习与无监督学习举例 什么是神经网络 引入 已经有六个房子的数据集&#xff0c;横轴为房子大小&#xff0c;纵轴为房子…

基于GRU实现股价多变量时间序列预测(PyTorch版)

前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记…

Linux -- HTTP 请求 与 响应 报文

目录 请求报文&#xff1a; 请求方法 响应报文&#xff1a; 状态码 与 状态码描述 共性 常见的报头 请求报文&#xff1a; 请求方法 方法说明GET获取资源POST传输实体主体PUT传输文件HEAD获得报文首部DELETE删除文件OPTIONS询问支持的方法TRACE追踪路径CONNECT要求用…

小米平板pad6工程固件界面预览 修复tee损坏 修复底层分区 开diag端口

💝💝💝小米平板pad6 机型代码pipa。采用一块分辨率为 2880*1800p,支持 120/144Hz 高刷新率的国产屏,并且屏幕支持 HDR10 + 以及杜比视界。分别搭载 SM8250AC(骁龙 870)、SM8475(骁龙 8+)处理器。也适用于以下型号的小米机型:23043RP34G, 23043RP34I, 23043RP34C等…

day03_开发前准备和匹配类标签

文章目录 day03_开发前准备和匹配类标签一、标签体系(了解)二、数据导入(操作)1、背景介绍(重要)2、创建Hive表2.1 dwm_sold_goods_sold_dtl_i2.2 dwm_sell_o2o_order_i**2.3 dwd_mem_member_union_i**2.4 dwm_mem_member_behavior_day_i**2.5 dwm_mem_first_buy_i**3、数…

STM32之FreeRTOS开发介绍(十九)

STM32F407 系列文章 - freertos&#xff08;十九&#xff09; 目录 前言 一、简述 二、开源网址 三、原理及功能特性 1.原理 2.功能 3.特点 4.优缺点 四、参考书籍 五、实现方式 总结 前言 FreeRTOS是一个免费的、开源的实时操作系统&#xff0c;专为微控制器和嵌入…

第十三章:数据库技术

文章目录&#xff1a; 一&#xff1a;基础 1.概念 2.特点 3.常见数据库品牌 4.数据库应⽤系统 4.1 C/S 4.2 B/S 5.数据模型的分类 6.名词解析 7.关系运算 二&#xff1a;Access 1.基础 2.操作 2.1 建立表 2.2 维护表 2.3 创建查询 2.4 创建窗体 2.5 创建报表…

stm32 no connect target

解决 STM32 报错 “no target connected” 的方法 前言 stm32最小系统在下载程序是一直报错&#xff1a;no target connected&#xff0c;试了很多办法成功不了&#xff0c;最后将芯片擦除了才成功。 一、问题描述 当时是写flash的时候写到ST Link 存储的地方了。 之后就不…

综述:大语言模型在机器人导航中的最新进展!

简介 机器人导航是指机器人能够在环境中自主移动和定位的能力。本文系统地回顾了基于大语言模型&#xff08;LLMs&#xff09;的机器人导航研究&#xff0c;将其分为感知、规划、控制、交互和协调等方面。具体来说&#xff0c;机器人导航通常被视为一个几何映射和规划问题&…

OpenHarmony-7.IDL工具

IDL 工具 1.openharmony IDL工具 在OpenHarmony中&#xff0c;当应用/系统服务的客户端和服务端进行IPC&#xff08;Inter-Process Communication&#xff09;跨线程通信时&#xff0c;需要定义双方都认可的接口&#xff0c;以保障双方可以成功通信&#xff0c;OpenHarmony ID…

Docker私有仓库管理工具Registry

Docker私有仓库管理工具Registry 1 介绍 Registry是私有Docker仓库管理工具&#xff0c;Registry没有可视化管理页面和完备的管理策略。可借助Harbor、docker-registry-browser完成可视化和管理。Harbor是由VMware开发的企业级Docker registry服务。docker-registry-browser是…

人工智能之数学基础:线性代数中的线性相关和线性无关

本文重点 在线性代数的广阔领域中,线性相关与线性无关是两个核心概念,它们对于理解向量空间、矩阵运算、线性方程组以及人工智能等问题具有至关重要的作用。 定义与直观理解 当存在一组不全为0的数x1,x2,...,xn使得上式成立的时候,那么此时我们可以说向量组a1,a2...,an…

【Django】多个APP设置独立的URL

目录 方法一&#xff1a;各个App下设置自己的URL 1、在各自的App当中创建urls.py文件​编辑 2、在主urls当中包含子url 3、各App的urls中设置url 4、设置后台函数 5、最终结果 总结&#xff1a; 方法二&#xff1a;利用as方法&#xff0c;在总的URL中对views重命名 实…

函数递归的介绍

1.递归的定义 在C语言中&#xff0c;递归就是函数自己调用自己 上面的代码就是 main 函数在函数主体内 自己调用自己 但是&#xff0c;上面的代码存在问题&#xff1a;main 函数反复地 自己调用自己 &#xff0c;不受限制&#xff0c;停不下来。 最终形成死递归&#xff0c;…

四、华为交换机 STP

生成树协议&#xff08;STP&#xff09;的核心目的是在存在冗余链路的网络中&#xff0c;构建一个无环的拓扑结构&#xff0c;从而防止网络环路带来的广播风暴等问题 一、STP 原理 选举根桥&#xff1a;网络中的每台交换机都会有一个唯一的桥 ID&#xff08;BID&#xff09;&am…

前端炫酷动画--图片(一)

目录 一、四角线框的跟随移动 二、元素倒影(-webkit-box-reflect) 三、模特换装(maskblend) 四、元素平滑上升 五、无限视差滚动 六、判断鼠标进入方向(轮播方向) 七、环形旋转效果 八、黑白小球交替旋转 九、hover时圆形放大 十、画一棵随机树(canvas) 十一、代码雨…

AI刷题-病毒在封闭空间中的传播时间

目录 问题描述 输入格式 输出格式 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 代码实现&#xff1a; 1.初始化&#xff1a; 2.设置边界条件&#xff1a; 3.判断 4.更新&#xff1a; 5.返回 最终的实现代码如下&#xff1a; 运行结果&#xff1a; …

SQL表间关联查询详解

简介 本文主要讲解SQL语句中常用的表间关联查询方式&#xff0c;包括&#xff1a;左连接&#xff08;left join&#xff09;、右连接&#xff08;right join&#xff09;、全连接&#xff08;full join&#xff09;、内连接&#xff08;inner join&#xff09;、交叉连接&…

路由器旁挂三层网络实现SDWAN互联(爱快SD-WAN)

近期因公司新办公区建设&#xff0c;原有的爱快路由器的SDWAN功能实现分支之间互联的服务还需要继续使用。在原有的小型网络中&#xff0c;使用的爱快路由器当作网关设备&#xff0c;所以使用较为简单,如下图所示。 现变更网络拓扑为三层网络架构&#xff0c;但原有的SDWAN分支…