openGauss学习笔记-49 openGauss 高级特性-索引推荐

news2025/2/25 18:26:52

文章目录

    • openGauss学习笔记-49 openGauss 高级特性-索引推荐
      • 49.1 单query索引推荐
      • 49.2 虚拟索引
      • 49.3 workload级别索引推荐

openGauss学习笔记-49 openGauss 高级特性-索引推荐

openGauss的索引推荐的功能,共包含三个子功能:单query索引推荐、虚拟索引和workload级别索引推荐。

49.1 单query索引推荐

单query索引推荐功能支持用户在数据库中直接进行操作,本功能基于查询语句的语义信息和数据库的统计信息,对用户输入的单条查询语句生成推荐的索引。本功能仅支持单条SELECT类型的语句,不支持其他类型的SQL语句。本功能依赖函数gs_index_advise实现。

表 1 单query索引推荐功能的接口

函数名参数功能
gs_index_adviseSQL语句字符串针对单条查询语句生成推荐索引。

使用上述函数,获取针对该query生成的推荐索引,推荐结果由索引的表名和列名组成。使用方法如下:

openGauss=# select "table", "column" from gs_index_advise('SELECT c_discount from bmsql_customer where c_w_id = 10');
     table      |  column  
----------------+----------
 bmsql_customer | (c_w_id)
(1 row)

上述结果表明,应当在表bmsql_customer的c_w_id列上创建索引。创建索引的命令如下:

CREATE INDEX idx on bmsql_customer(c_w_id);

某些SQL语句,也可能被推荐创建联合索引,例如:

openGauss=# select "table", "column" from gs_index_advise('select name, age, sex from t1 where age >= 18 and age < 35 and sex = ''f'';');
 table | column
-------+------------
 t1    | (age, sex)
(1 row)

则上述语句表明应该在表t1上创建一个联合索引 (age, sex)。创建索引的命令如下:

CREATE INDEX idx1 on t1(age, sex);

49.2 虚拟索引

虚拟索引功能支持用户在数据库中直接进行操作,本功能将模拟真实索引的建立,避免真实索引创建所需的时间和空间开销,用户基于虚拟索引,可通过优化器评估该索引对指定查询语句的代价影响。虚拟索引涉及的函数接口和GUC参数,请参见表2表3

表 2 虚拟索引功能的接口

函数名参数功能
hypopg_create_index创建索引语句的字符串创建虚拟索引。
hypopg_display_index显示所有创建的虚拟索引信息。
hypopg_drop_index索引的oid删除指定的虚拟索引。
hypopg_reset_index清除所有虚拟索引。
hypopg_estimate_size索引的oid估计指定索引创建所需的空间大小。

表 3 虚拟索引功能的GUC参数

参数名功能默认值
enable_hypo_index是否开启虚拟索引功能off

使用方法如下:

  1. 使用函数hypopg_create_index创建虚拟索引。

    openGauss=# select * from hypopg_create_index('create index on bmsql_customer(c_w_id)');
     indexrelid |              indexname              
    ------------+-------------------------------------
         329726 | <329726>btree_bmsql_customer_c_w_id
    (1 row)
    
  2. 开启GUC参数enable_hypo_index,该参数控制数据库的优化器进行EXPLAIN时是否考虑创建的虚拟索引。通过对特定的查询语句执行explain,用户可根据优化器给出的执行计划评估该索引是否能够提升该查询语句的执行效率。例如:

    开启GUC参数前,执行EXPLAIN + 查询语句:

    openGauss=# explain SELECT c_discount from bmsql_customer where c_w_id = 10;
                                  QUERY PLAN                              
    ----------------------------------------------------------------------
     Seq Scan on bmsql_customer  (cost=0.00..52963.06 rows=31224 width=4)
       Filter: (c_w_id = 10)
    (2 rows)
    

    开启GUC参数:

    openGauss=# set enable_hypo_index = on;
    SET
    

    开启GUC参数后,执行EXPLAIN + 查询语句:

    openGauss=# explain SELECT c_discount from bmsql_customer where c_w_id = 10;
                                                        QUERY PLAN                                                    
    ------------------------------------------------------------------------------------------------------------------
     [Bypass]
     Index Scan using <329726>btree_bmsql_customer_c_w_id on bmsql_customer  (cost=0.00..39678.69 rows=31224 width=4)
       Index Cond: (c_w_id = 10)
    (3 rows)
    

    通过对比两个执行计划可以观察到,该索引预计会降低指定查询语句的执行代价,用户可考虑创建对应的真实索引。

  3. (可选)使用函数hypopg_display_index展示所有创建过的虚拟索引。例如:

    openGauss=# select * from hypopg_display_index();
                     indexname                  | indexrelid |     table      |      column      
    --------------------------------------------+------------+----------------+------------------
     <329726>btree_bmsql_customer_c_w_id        |     329726 | bmsql_customer | (c_w_id)
     <329729>btree_bmsql_customer_c_d_id_c_w_id |     329729 | bmsql_customer | (c_d_id, c_w_id)
    (2 rows)
    
  4. (可选)使用函数hypopg_estimate_size估计虚拟索引创建所需的空间大小(单位:字节)。例如:

    openGauss=# select * from hypopg_estimate_size(329730);
     hypopg_estimate_size 
    ----------------------
                 15687680
    (1 row)
    
  5. 删除虚拟索引。

    使用函数hypopg_drop_index删除指定oid的虚拟索引。例如:

    openGauss=# select * from hypopg_drop_index(329726);
     hypopg_drop_index 
    -------------------
     t
    (1 row)
    

    使用函数hypopg_reset_index一次性清除所有创建的虚拟索引。例如:

    openGauss=# select * from hypopg_reset_index();
     hypopg_reset_index 
    --------------------
    
    (1 row)
    

49.3 workload级别索引推荐

对于workload级别的索引推荐,用户可通过运行数据库外的脚本使用此功能,本功能将包含有多条DML语句的workload作为输入,最终生成一批可对整体workload的执行表现进行优化的索引。

  1. 准备好包含有多条DML语句的文件作为输入的workload,文件中每条语句占据一行。用户可从数据库的离线日志中获得历史的业务语句。

  2. 运行python脚本index_advisor_workload.py,命令如下:

    python index_advisor_workload.py [p PORT] [d DATABASE] [f FILE] [--h HOST] [-U USERNAME] [-W PASSWORD][--schema SCHEMA]
    [--max_index_num MAX_INDEX_NUM][--max_index_storage MAX_INDEX_STORAGE] [--multi_iter_mode] [--multi_node]  [--json] [--driver] [--show_detail]
    

    其中的输入参数依次为:

    • PORT:连接数据库的端口号。
    • DATABASE:连接数据库的名字。
    • FILE:包含workload语句的文件路径。
    • HOST:(可选)连接数据库的主机号。
    • USERNAME:(可选)连接数据库的用户名。
    • PASSWORD:(可选)连接数据库用户的密码。
    • SCHEMA:模式名称。
    • MAX_INDEX_NUM:(可选)最大的索引推荐数目。
    • MAX_INDEX_STORAGE:(可选)最大的索引集合空间大小。
    • multi_node:(可选)指定当前是否为分布式数据库实例。
    • multi_iter_mode:(可选)算法模式,可通过是否设置该参数来切换算法。
    • json:(可选)指定workload语句的文件路径格式为SQL归一化后的json,默认格式每条SQL占一行。
    • driver:(可选)指定是否使用python驱动器连接数据库,默认gsql连接。
    • show_detail:(可选)是否显示当前推荐索引集合的详细优化信息。

    例如:

    python index_advisor_workload.py 6001 postgres tpcc_log.txt --schema public --max_index_num 10 --multi_iter_mode
    

    推荐结果为一批索引,以多个创建索引语句的格式显示在屏幕上,结果示例。

    create index ind0 on public.bmsql_stock(s_i_id,s_w_id);
    create index ind1 on public.bmsql_customer(c_w_id,c_id,c_d_id);
    create index ind2 on public.bmsql_order_line(ol_w_id,ol_o_id,ol_d_id);
    create index ind3 on public.bmsql_item(i_id);
    create index ind4 on public.bmsql_oorder(o_w_id,o_id,o_d_id);
    create index ind5 on public.bmsql_new_order(no_w_id,no_d_id,no_o_id);
    create index ind6 on public.bmsql_customer(c_w_id,c_d_id,c_last,c_first);
    create index ind7 on public.bmsql_new_order(no_w_id);
    create index ind8 on public.bmsql_oorder(o_w_id,o_c_id,o_d_id);
    create index ind9 on public.bmsql_district(d_w_id);
    

👍 点赞,你的认可是我创作的动力!

⭐️ 收藏,你的青睐是我努力的方向!

✏️ 评论,你的意见是我进步的财富!

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/923794.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一百六十五、Kettle——用海豚调度器调度Linux资源库中的kettle任务脚本(亲测、附流程截图)

一、目的 在Linux上脚本运行kettle的转换任务、无论是Linux本地还是Linux资源库都成功后&#xff0c;接下来就是用海豚调度Linux上kettle任务 尤其是团队开发中&#xff0c;基本都要使用共享资源库&#xff0c;所以我直接使用海豚调度Linux资源库的kettle任务脚本 二、前提条…

扎实写完这篇博客

(论文阅读) 作者自述&#xff1a;到了新的实验室&#xff0c;原本的实验方向发生了巨大的改变&#xff0c;对自动驾驶和车联网一头雾水&#xff0c;所以从综述入手&#xff0c;了解轨迹预测任务的头尾&#xff0c;以及对于现阶段的研究点做出初步的统计和积累&#xff0c;为后…

高阶数据结构跳表

"想象为翼&#xff0c;起飞~" 跳表简介&#xff1f; skiplist本质上是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff0c;跟平衡搜索树和哈希表的价值是 一样的&#xff0c;可以作为key或者key/value的查找模型。 跳表由来 skiplist是由美国计算…

【SCSS变量】$ | | var | @for | @include | @function | @each 等常用方法使用

SCSS优点&#xff1a;编写清晰、无冗余、语义化的CSS&#xff0c;减少不必要的重复工作 1、变量声明&#xff08;$&#xff09;和使用2、使用 & 代替父元素3、在HTML中使用 :style{--name: 动态值}自定义属性&#xff0c;在SCSS中用var(--name)函数绑定动态变量值&#xff…

一文搞懂数据中心ip和住宅ip

我们在购买到一个代理后&#xff0c;通过检测网址会看到检测类型会出现有hosting或者具体的某个运营商&#xff0c;代表这是两种不同的代理&#xff1a;数据中心代理以及isp住宅代理。 1、什么是isp住宅代理 ISP 全称为 Internet Service Provider&#xff08;互联网服务提供…

C语言之feof与fgetc应用实例(八十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

【FreeRTOS】【STM32】中断详细介绍

文章目录 一、三种优先级的概念辨析1. 先理清楚两个概念&#xff1a;CPU 和 MPU2. Cortex-M3 内核与 STM32F1XX 控制器有什么关系3. 优先级的概念辨析① Cortex-M3 内核和 STM32F1XX 的中断优先级② FreeRTOS 的任务的优先级 二、 Cortex-M3 内核的中断优先级1. 中断编号2. 优先…

XD转Sketch完美实现,这款神器助你轻松转换设计文件

Adobe XD和Sketch作为主流设计软件,却存在文件格式不兼容的痛点。设计师经常需要在两款软件之间互相转换设计稿件,头疼不已。那么有没有一种简单快捷的方法实现XD到Sketch的格式转换呢?答案是有的!今天就来看看这个神奇的在线互转工具。 XD转Sketch&#xff0c;在线免费转 这…

栈和队列在数据结构中的应用

文章目录 理解栈和队列的概念及其特点栈的应用和操作队列的应用和操作结论 &#x1f389;欢迎来到数据结构学习专栏~探索栈和队列在数据结构中的应用 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&#x1f388;该系列文章专栏&#xff1a;…

基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要&#xff1a;基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统可用于日常生活中检测与定位车辆、汽车等目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用…

Linux之基础IO文件系统讲解

基础IO文件系统讲解 回顾C语言读写文件读文件操作写文件操作输出信息到显示器的方法stdin & stdout & stderr总结 系统文件IOIO接口介绍文件描述符fd文件描述符的分配规则C标准库文件操作函数简易模拟实现重定向dup2 系统调用在minishell中添加重定向功能 FILE文件系统…

【项目管理】PMP考试总结

2023年08月19日考完了PMP&#xff0c;总结一下子 1、花费费用 先算下花费及购置的材料&#xff1a; 5月14日&#xff1a;书-拼多多 PMBOK指南第七版&#xff0c;19.8 5月28日&#xff1a;书-淘宝&#xff1a; 敏捷实践指南&#xff0c;30.49&#xff0c; PMBOK指南第6版&…

将一个树形结构的数据平铺成一个一维数组(vue3)

一、需求描述 由于自带组件库没有具体完善,无法实现像element-ui这种可以多选选择任意一级的选项,也就是说,选择父级的时候不会联动选择子级的全部 例如: 所以,才会出现【二、案例场景】类似的场景,可以用来多选 ,并可以实现单选父级而不关联子级,选择了将树状数据进…

浅谈 Linux 下 vim 的使用

Vim 是从 vi 发展出来的一个文本编辑器&#xff0c;其代码补全、编译及错误跳转等方便编程的功能特别丰富&#xff0c;在程序员中被广泛使用。 Vi 是老式的字处理器&#xff0c;功能虽然已经很齐全了&#xff0c;但还有可以进步的地方。Vim 可以说是程序开发者的一项很好用的工…

AutoSAR配置与实践(基础篇)3.6 BSW的WatchDog功能

3.6 BSW的WatchDog功能 一、WatchDog功能介绍1.1 WatchDog 模块组成1.2 内外部看门狗区别和原理1.3 常见看门狗校验方式一、WatchDog功能介绍 1.1 WatchDog 模块组成 WatchDog 即看门狗功能。这个看门狗不是真正看家的狗,而是软件的一个模块,但是因为功能类似故以此起名。主…

LeetCodeHot100python版本:单调栈,栈,队列,堆

单调栈 739. 每日温度 42. 接雨水 双指针 单调栈(横向求解) ​​​​​​84. 柱状图中最大的矩形 栈和队列 队列:先入先出 栈:先入后出 两个栈 模拟 队列 一个队列 可以模拟 栈 20. 有效的括号 ​​​​​​155. 最小栈 394. 字符串解码 堆 215. 数组中的第K个最大元素 3…

嵌入式Linux开发实操(十二):PWM接口开发

# 前言 使用pwm实现LED点灯,可以说是嵌入式系统的一个基本案例。那么嵌入式linux系统下又如何实现pwm点led灯呢? # PWM在嵌入式linux下的操作指令 实际使用效果如下,可以通过shell指令将开发板对应的LED灯点亮。 点亮3个LED,则分别使用pwm1、pwm2和pwm3。 # PWM引脚的硬…

拆解1000篇爆文!揭秘种草爆文四大万能公式

2023年上半场已收官&#xff0c;小红书用户青睐什么内容&#xff1f; 千瓜调研2023上半年的1000篇商业笔记爆文&#xff0c;从笔记类型和内容特征两大层面总结以下四大内容种草爆文公式&#xff0c;快来围观&#xff01; 突破同质化 爆款内容创新风向 笔记类型角度 千瓜调…

2022年度瞪羚培育企业名单公布,科东软件上榜

8月23日&#xff0c;广州市黄埔区、广州开发区2022年度瞪羚企业和瞪羚培育企业名单公布。科东软件凭借国产化技术创新优势、成熟的数字化转型方案和强劲的经营成长韧性&#xff0c;入选广州开发区2022年度瞪羚培育企业。 瞪羚培育企业是指未来在科技创新或商业模式创新方面有…

Navicat安装教程

众所周知&#xff0c; Navicat是一款轻量级的用于MySQL连接和管理的工具&#xff0c;非常好用&#xff0c;使用起来方便快捷&#xff0c;简洁。下面我会简单的讲一下其安装以及使用的方法。并且会附带相关的永久安装教程。 简介 一般我们在开发过程中是离不开数据库的&#xf…