基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv8模型)

news2025/2/25 21:02:06

摘要:基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统可用于日常生活中检测与定位车辆、汽车等目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的Kitti数据集标注了行人(Pedestrian)、面包车(Van)、坐着的人(Person Sitting)、汽车(Car)、卡车(Truck)、骑自行车的人(Cyclist)、有轨电车(Tram)以及其他目标(Misc)这八个类别,数据集总计7481张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的Kitti检测识别数据集包含训练集6000张图片,验证集1481张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/923763.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux之基础IO文件系统讲解

基础IO文件系统讲解 回顾C语言读写文件读文件操作写文件操作输出信息到显示器的方法stdin & stdout & stderr总结 系统文件IOIO接口介绍文件描述符fd文件描述符的分配规则C标准库文件操作函数简易模拟实现重定向dup2 系统调用在minishell中添加重定向功能 FILE文件系统…

【项目管理】PMP考试总结

2023年08月19日考完了PMP,总结一下子 1、花费费用 先算下花费及购置的材料: 5月14日:书-拼多多 PMBOK指南第七版,19.8 5月28日:书-淘宝: 敏捷实践指南,30.49, PMBOK指南第6版&…

将一个树形结构的数据平铺成一个一维数组(vue3)

一、需求描述 由于自带组件库没有具体完善,无法实现像element-ui这种可以多选选择任意一级的选项,也就是说,选择父级的时候不会联动选择子级的全部 例如: 所以,才会出现【二、案例场景】类似的场景,可以用来多选 ,并可以实现单选父级而不关联子级,选择了将树状数据进…

浅谈 Linux 下 vim 的使用

Vim 是从 vi 发展出来的一个文本编辑器,其代码补全、编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用。 Vi 是老式的字处理器,功能虽然已经很齐全了,但还有可以进步的地方。Vim 可以说是程序开发者的一项很好用的工…

AutoSAR配置与实践(基础篇)3.6 BSW的WatchDog功能

3.6 BSW的WatchDog功能 一、WatchDog功能介绍1.1 WatchDog 模块组成1.2 内外部看门狗区别和原理1.3 常见看门狗校验方式一、WatchDog功能介绍 1.1 WatchDog 模块组成 WatchDog 即看门狗功能。这个看门狗不是真正看家的狗,而是软件的一个模块,但是因为功能类似故以此起名。主…

LeetCodeHot100python版本:单调栈,栈,队列,堆

单调栈 739. 每日温度 42. 接雨水 双指针 单调栈(横向求解) ​​​​​​84. 柱状图中最大的矩形 栈和队列 队列:先入先出 栈:先入后出 两个栈 模拟 队列 一个队列 可以模拟 栈 20. 有效的括号 ​​​​​​155. 最小栈 394. 字符串解码 堆 215. 数组中的第K个最大元素 3…

嵌入式Linux开发实操(十二):PWM接口开发

# 前言 使用pwm实现LED点灯,可以说是嵌入式系统的一个基本案例。那么嵌入式linux系统下又如何实现pwm点led灯呢? # PWM在嵌入式linux下的操作指令 实际使用效果如下,可以通过shell指令将开发板对应的LED灯点亮。 点亮3个LED,则分别使用pwm1、pwm2和pwm3。 # PWM引脚的硬…

拆解1000篇爆文!揭秘种草爆文四大万能公式

2023年上半场已收官,小红书用户青睐什么内容? 千瓜调研2023上半年的1000篇商业笔记爆文,从笔记类型和内容特征两大层面总结以下四大内容种草爆文公式,快来围观! 突破同质化 爆款内容创新风向 笔记类型角度 千瓜调…

2022年度瞪羚培育企业名单公布,科东软件上榜

8月23日,广州市黄埔区、广州开发区2022年度瞪羚企业和瞪羚培育企业名单公布。科东软件凭借国产化技术创新优势、成熟的数字化转型方案和强劲的经营成长韧性,入选广州开发区2022年度瞪羚培育企业。 瞪羚培育企业是指未来在科技创新或商业模式创新方面有…

Navicat安装教程

众所周知, Navicat是一款轻量级的用于MySQL连接和管理的工具,非常好用,使用起来方便快捷,简洁。下面我会简单的讲一下其安装以及使用的方法。并且会附带相关的永久安装教程。 简介 一般我们在开发过程中是离不开数据库的&#xf…

win11 设置小任务栏

设置后效果 以下两种工具均可 1、StartAllBack 2、Start11

安全防护产品对接流程讲解

服务器被攻击了,怎么对接高防产品呢,需要提供什么? 1、配置转发规则:提供域名、IP、端口,由专业技术人员为您配置转发协议/转发端口/源站IP等转发规则,平台会分配该线路独享高防IP。 2、修改DNS解析&…

2023年高教社杯数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

Frp自建内网穿透

目录 Frp使用须知 Frp的工作原理 Frp配置服务端 frp文件夹内的文件 frps.ini配置文件 仪表盘 Frp配置客户端 文件目录 frpc.ini配置文件 Frp使用须知 前言:自建frp需要部署服务端以及客户端,服务端类似于花生壳服务端,ngrok服务端…

SQL注入之HTTP头部注入

文章目录 cookie注入练习获取数据库名称获取版本号 base64注入练习获取数据库名称获取版本号 user-agent注入练习获取数据库名称获取版本号 cookie注入练习 向服务器传参三大基本方法:GPC GET方法,参数在URL中 POST,参数在body中 COOKIE,参数…

了解设备全生命周期管理的5个阶段和好处

在现代企业运营中,设备的有效管理对于提高生产效率和降低成本至关重要。设备全生命周期管理涵盖了从规划、获取、利用、维护到处置的一系列阶段,确保设备在其整个寿命内保持高效、可靠。本文将介绍设备全生命周期管理的基础知识,探讨每个阶段…

[蓝帽杯 2022 初赛]domainhacker

打开流量包,追踪TCP流,看到一串url编码 放到瑞士军刀里面解密 最下面这一串会觉得像base64编码 删掉前面两个字符就可以base64解码 依次类推,提取到第13个流,得到一串编码其中里面有密码 导出http对象 发现最后有个1.rar文件 不出…

解决 node-gyp 错误问题

gyp verb check python checking for Python executable “python2.7” in the PATH gyp verb which failed Error: not found: python2.7 安装老项目老是报错Python找不到,以为是自己node版本高过了node-sass导致的,把node版本降下来还是不行。然后找到…

Socket基本原理

一、简单介绍 Socket,又称套接字,是Linux跨进程通信(IPC,Inter Process Communication)方式的一种。相比于其他IPC方式,Socket牛逼在于可做到同一台主机内跨进程通信,不同主机间的跨进程通信。…

感受繁华都市中的人间温情 孙俪罗晋携手为爱《安家》|湖北卫视今晚开播

安居乐业是许多中国家庭一生绕不开的关卡,买房便成了持续不减的社会热点话题。电视剧《安家》将镜头对准与人们生活息息相关的房产行业,以房屋中介的视角,窥见民生百态,从看房、签订合同再到办理过户手续,高度还原了房…