c++学习之内存管理

news2024/11/24 5:35:57

目录

1.c/c++内存分布

2.new与delete/malloc与free

c++内存管理方式:

new/delete操作内置类型:

new/delete操作自定义类型

 operator new与operator delete函数

new和delete的实现原理

 内置类型

自定义类型

malloc/free和new/delete的区别


1.c/c++内存分布

在学习c语言的时候我们就已经了解到不同的数据存储在不同的空间当中,对于内存,其被划分成不同的各个区域,分别用来管理不同的数据,如下图:

可以看到内存被划分为堆区,栈区,静态区,代码段区,内存映射段,数据段。
每一种区域都存放着不同的数据。
1. 又叫堆栈 -- 非静态局部变量 / 函数参数 / 返回值等等,栈是向下增长的。
我们常定义的函数,普通变量等都存放在栈区。
2. 内存映射段 是高效的 I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
创建共享共享内存,做进程间通信。( Linux 课程如果没学到这块,现在只需要了解一下)
3. 用于程序运行时动态内存分配,堆是可以向上增长的。
对于数据结构中,我们常常开辟堆区的内存保存数据,在c++中也是如此且有新方法。
4. 数据段 -- 存储全局数据和静态数据。static修饰的全局变量与定义的全局变量存放处。
5. 代码段 -- 可执行的代码 / 只读常量。

其次, c++在继承c语言的基础上,对于堆区上的申请和释放做了优化,这将体现在c++类和自定义数据类型中。

2.new与delete/malloc与free

首先我们知道如何利用c语言的方式向堆区上开辟空间,我们利用malloc,cealloc,realloc这三个函数可以实现向堆区上开辟一块空间,之后我们在进行初始化,在对空间的利用完之后,利用free函数释放掉对上的空间,实现动态内存管理。

如下代码:
int main()
{
	char* p1 = (char*)malloc(sizeof(char)*10); 
	free(p1);
	char* p2 = (char*)calloc(char ("hello world"), sizeof(char)*10);
	char *p3 = (char*)realloc(p2, sizeof(char) * 10);
	free(p3);
	return 0;
}

对于c语言的动态内存管理:

1.首先大佬认为如此的设计使得动态内存管理过于冗余,对于空间的开辟较为麻烦。

2.我们需要强制类型转换并计算出所需该类型的大小。

c++内存管理方式:

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因
此C++又提出了自己的内存管理方式 通过new和delete操作符进行动态内存管理

new/delete操作内置类型:

 我们能看到对于new的一些操作及运算符重载。

对于c++:我们可以利用new来进行动态内存的申请,利用delete进行内存的释放。

void Test()
{
  // 动态申请一个int类型的空间
  int* ptr4 = new int;
  
  // 动态申请一个int类型的空间并初始化为10
  int* ptr5 = new int(10);
  
  // 动态申请10个int类型的空间
  int* ptr6 = new int[3];
  //动态申请5个int类型的空间并初始化
  int *ptr7=new int[5]{1,2,3,4,5};

  delete ptr4;
  delete ptr5;
  delete[] ptr6;
  delete[] ptr7;
}

可以看到我们可以初始化空间,并且对于多个内存的开辟也更加方便,对于大小可以自己推导,如一个整型四个字节,一个字符型一个字节。

注意:这里在开辟多个或一个空间时,delete的写法也应与之对应,否则存在释放报错。

因为c++兼容c语言,所以除了书写简便,对于内置类型,功能是一样的。

new/delete操作自定义类型

如果仅仅是因为优化写法,那么在c++设计new和delete是纯属没有必要的,真正牛逼得地方是new与delete可以操作自定义类型!!!而这与c++11类和对象密切联系着。

利用malloc与free我们只能做到对空间的开辟与释放,但无法去初始化这个自定义类型的空间。

如自定义类型A:

class A
{
public:
	A(int a = 0)
		: a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
   void init_a(int x)
    {
  	  _a = x;
    }
private:
	int a;
};

对于自定义类型下的malloc:

void test1()
{
	A* p1 = (A*)malloc(sizeof(A));
	//无法调用构造函数来初始化,因为当前无法显式调用构造函数
	p1->_a = 5;//也无法对私有数据操作,只能通过定义接口函数来初始化
	p1->init_a(5);//这也是对于简单的数据,若是设计的类中数据量偌大,则直接就g了
	free(p1);
}

 我们可以看到自定义类型的数据要实现初始化太困难且复杂,甚至没法用。

那么对于重新设计的new与delete:

int main()
{
	// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间
	//还会调用构造函数和析构函数
	A* p1 = new A;
	A* p2 = new A(5);
	A* p3 = new A[2]{1,2};
	delete p1;
	delete p2;
	delete[]p3;
	return 0;
}

对于初始化new可以再申请空间后调用构造函数,对于释放delete会调用析构函数,之后在释放空间。

 

 operator newoperator delete函数

new delete 是用户进行 动态内存申请和释放的操作符 operator new operator delete
系统提供的 全局函数 new 在底层调用 operator new 全局函数来申请空间, delete 在底层通过
operator delete 全局函数来释放空间。
注意这两个作为函数(对于new和delete的实现),并非是new与delete的重载。
如下段代码:
// try to allocate size bytes
void *p;
while ((p = malloc(size)) == 0)
比特就业课
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
5. new和delete的实现原理
5.1 内置类型
     if (_callnewh(size) == 0)
     {
         // report no memory
         // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
         static const std::bad_alloc nomem;
         _RAISE(nomem);
     }
return (p);
}

void operator delete(void *pUserData)
{
     _CrtMemBlockHeader * pHead;
     RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
     if (pUserData == NULL)
         return;
     _mlock(_HEAP_LOCK);  /* block other threads */
     __TRY
         /* get a pointer to memory block header */
         pHead = pHdr(pUserData);
          /* verify block type */
         _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
         _free_dbg( pUserData, pHead->nBlockUse );
     __FINALLY
         _munlock(_HEAP_LOCK);  /* release other threads */
     __END_TRY_FINALLY
     return;
}
/*

对于这里的new内存开辟失败的时候,这里设计利用异常进行判断。

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常,程序遇到异常就直接终止了。operator delete 最终是通过free来释放空间的

newdelete的实现原理

 内置类型

   
 if (_callnewh(size) == 0)
    {
        // report no memory
        // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
        static const std::bad_alloc nomem;
        _RAISE(nomem);
    }
return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{
    _CrtMemBlockHeader * pHead;
    RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
    if (pUserData == NULL)
        return;
    _mlock(_HEAP_LOCK);  /* block other threads */
    __TRY
        /* get a pointer to memory block header */
        pHead = pHdr(pUserData);
         /* verify block type */
        _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
        _free_dbg( pUserData, pHead->nBlockUse );
    __FINALLY
        _munlock(_HEAP_LOCK);  /* release other threads */
    __END_TRY_FINALLY
    return;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

如果申请的是内置类型的空间, new malloc delete free 基本类似,不同的地方是:
new/delete 申请和释放的是单个元素的空间, new[] delete[] 申请的是连续空间,而且 new 在申
请空间失败时会抛异常, malloc 会返回 NULL

自定义类型

new 的原理
1. 调用 operator new 函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete 的原理
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用 operator delete 函数释放对象的空间
new T[N] 的原理
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
象空间的申请
2. 在申请的空间上执行 N 次构造函数
delete[] 的原理
1. 在释放的对象空间上执行 N 次析构函数,完成 N 个对象中资源的清理
2. 调用 operator delete[] 释放空间,实际在 operator delete[] 中调用 operator delete 来释
放空间

malloc/freenew/delete的区别

malloc/free new/delete 的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地
方是:
1. malloc free 是函数, new delete 是操作符
2. malloc 申请的空间不会初始化, new 可以初始化
3. malloc 申请空间时,需要手动计算空间大小并传递, new 只需在其后跟上空间的类型即可,
如果是多个对象, [] 中指定对象个数即可
4. malloc 的返回值为 void*, 在使用时必须强转, new 不需要,因为 new 后跟的是空间的类型
5. malloc 申请空间失败时,返回的是 NULL ,因此使用时必须判空, new 不需要,但是 new
要捕获异常
6. 申请自定义类型对象时, malloc/free 只会开辟空间,不会调用构造函数与析构函数,而 new
在申请空间后会调用构造函数完成对象的初始化, delete 在释放空间前会调用析构函数完成
空间中资源的清理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/923309.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux——初始

linux是一个操作系统&#xff0c;目前主流就是在服务器后端被选作服务器的操作系统来使用&#xff0c;所以我们没有直接接触到。 Linux的历史和概念 先是国家投钱给科研技术人员&#xff0c;科研技术人员将科研成果部分投入生活用品卖给老百姓&#xff0c;老百姓购买产品同时还…

Java课题笔记~ 综合案例

3.综合案例 3.1 功能介绍 以上是我们在综合案例要实现的功能。除了对数据的增删改查功能外&#xff0c;还有一些复杂的功能&#xff0c;如 批量删除、分页查询、条件查询 等功能 批量删除 功能&#xff1a;每条数据前都有复选框&#xff0c;当我选中多条数据并点击 批量删除 按…

YOLOv5算法改进(4)— 添加CA注意力机制

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。注意力机制是近年来深度学习领域内的研究热点&#xff0c;可以帮助模型更好地关注重要的特征&#xff0c;从而提高模型的性能。在许多视觉任务中&#xff0c;输入数据通常由多个通道组成&#xff0c;例如图像中的RGB通道或…

村口的人家排放污水,污水浸染了整个村子,怎么办

从前有一个很不错的村子里&#xff0c;村子里有很多户人家&#xff0c;随着生活水平越来越好&#xff0c;房子也修起来了&#xff0c;柏油马路也宽敞了&#xff0c;大家进出村子&#xff0c;都要走那条马路&#xff0c;要不就出不去。 目录 1. 修厕所 2. 村口的日家 3. 告诉…

商城的TPS与并发用户数是如何换算的?

商城的TPS与并发用户数的换算关系可以通过以下公式计算&#xff1a; TPS 并发用户数 / 平均事务响应时间 其中&#xff0c;平均事务响应时间是指系统处理一个事务所需的平均时间。 下面是商城性能测试的一些用例示例&#xff1a; 用户登录&#xff1a; 目标&#xff1a;测…

4.物联网LWIP之C/S编程,stm32作为服务器,stm32作为客户端,代码的优化

LWIP配置 服务器端实现 客户端实现 错误分析 一。LWIP配置&#xff08;FREERTOS配置&#xff0c;ETH配置&#xff0c;LWIP配置&#xff09; 1.FREERTOS配置 为什么要修改定时源为Tim1&#xff1f;不用systick&#xff1f; 原因&#xff1a;HAL库与FREERTOS都需要使用systi…

【Python原创毕设|课设】基于Python Flask的上海美食信息与可视化宣传网站项目-文末附下载方式以及往届优秀论文,原创项目其他均为抄袭

基于Python Flask的上海美食信息与可视化宣传网站&#xff08;获取方式访问文末官网&#xff09; 一、项目简介二、开发环境三、项目技术四、功能结构五、运行截图六、功能实现七、数据库设计八、源码获取 一、项目简介 随着大数据和人工智能技术的迅速发展&#xff0c;我们设…

【JavaEE进阶】MyBatis表查询

文章目录 一. 使用MyBatis完成数据库的操作1. MyBatis程序中sql语句的即时执行和预编译1.1 即时执行&#xff08;${}&#xff09;1.2 预编译&#xff08;#{}&#xff09;1.3 即时执行和预编译的优缺点 2. 单表的增删改等操作2.1 增加操作2.2 修改操作2.3 删除操作2.4 like(模糊…

星际争霸之小霸王之小蜜蜂(六)--让子弹飞

目录 前言 一、添加子弹设置 二、创建子弹 三、创建绘制和移动子弹函数 四、让子弹飞 五、效果 总结 前言 小蜜蜂的基本操作已经完成了&#xff0c;现在开始编写子弹的代码了。 一、添加子弹设置 在我的预想里&#xff0c;我们的小蜜蜂既然是一只猫&#xff0c;那么放出的子弹…

基于小波神经网络的短时交通流量预测Matlab代码

1案例背景 1.1小波理论 小波分析是针对傅里叶变换的不足发展而来的。傅里叶变换是信号处理领域中应用最广泛的一种分析手段,然而它有一个严重不足,就是变换时抛弃了时间信息,通过变换结果无法判断某个信号发生的时间,即傅里叶变换在时域中没有分辨能力。小波是长度有限、平均为…

分布式与微服务相关知识

分布式与微服务 1.zookeeper是什么2.zookeeper保证数据一致性3.zookeeper的快速领导者选举是怎么实现的4.CAP理论5.BASE理论6.分布式id生成方案&#xff08;1&#xff09;UUID&#xff08;2&#xff09;数据库自增序列&#xff08;3&#xff09;Leaf-segment&#xff08;4&…

Linux下的系统编程——vim/gcc编辑(二)

前言&#xff1a; 在Linux操作系统之中有很多使用的工具&#xff0c;我们可以用vim来进行程序的编写&#xff0c;然后用gcc来生成可执行文件&#xff0c;最终运行程序。下面就让我们一起了解一下vim和gcc吧 目录 一、vim编辑 1.vim的三种工作模式 2.基本操作之跳转字符 &a…

实现外网访问本地服务

最近开发需要其他项目组的人访问我本地服务测试,但又不在同一个地方,不能使用内网访问,所以需要外网访问本地服务功能. 条件: 1.需要一台具备公网IP的服务器 我用的服务器是windows,电脑也是Windows系统 2.下载frp 软件,只需要下载一份就可以了,分别放到服务器上和本地目录既…

2011-2021年全国各省绿色创新效率数据(原始数据+测算结果)

2011-2021年全国各省绿色创新效率数据&#xff08;原始数据测算结果) 2011-2021年全国各省绿色创新效率 1、时间&#xff1a;2011-2021年 2、范围&#xff1a;全国31省市 3、来源&#xff1a;各省年鉴、科技年鉴、环境年鉴 4、指标&#xff1a;地区、编号、年份、R&D人…

设计模式大白话——命令模式

命令模式 一、概述二、经典举例三、代码示例&#xff08;Go&#xff09;四、总结 一、概述 ​ 顾名思义&#xff0c;命令模式其实和现实生活中直接下命令的动作类似&#xff0c;怎么理解这个命令是理解命令模式的关键&#xff01;&#xff01;&#xff01;直接说结论是很不负责…

树形结构的快速生成

背景 相信大家都遇到过树形结构&#xff0c;像是文件列表、多级菜单、评论区的设计等等&#xff0c;我们都发现它有很多层级&#xff0c;第一级可以有多个&#xff0c;下边的每一个层级也可以有多个&#xff1b;有的可以设计成无限层级的&#xff0c;有的只能设计成两级。那么…

工程师使用IT服务台软件可以解决哪些问题?

现如今企业数字化建设已初具规模&#xff0c;业务系统基本已告一段落&#xff0c;而下一步关注的重点则从技术转向管理&#xff0c;如何能让这些系统更好运行起来&#xff0c;如何提高管理效率已是重中之重。在此向您推荐一款高效的IT服务管理工具——ServiceDesk Plus&#xf…

elementui的el-tabs标签页样式修改

一、官网样式&#xff1a; 二、修改样式 1.去掉下划线 效果&#xff1a; 代码: /* 去掉tabs标签栏下的下划线 */ ::v-deep .el-tabs__nav-wrap::after {position: static !important;/* background-color: #fff; */ } 2.改变下划线颜色 效果&#xff1a; 代码&#xff1a;…

使用VisualStudio制作上位机(三)

文章目录 使用VisualStudio制作上位机(三)第三部分:GUI内部函数设计使用VisualStudio制作上位机(三) Author:YAL 第三部分:GUI内部函数设计 这一部分,主要实现CAN设备的打开 将CAN厂家的二次开发文件添加到工程里调用相关函数打开或关闭CAN首先,添加“类文件”,类主…

死锁的典型情况、产生的必要条件和解决方案

前言 死锁&#xff1a;多个线程同时被阻塞&#xff0c;他们中的一个或全部都在等待某个资源被释放。由于线程被无限期地阻塞&#xff0c;因此程序不可能正常终止。 目录 前言 一、死锁的三种典型情况 &#xff08;一&#xff09;一个线程一把锁 &#xff08;二&#xff09;…