36k字从Attention解读Transformer及其在Vision中的应用(pytorch版)

news2024/10/1 19:20:09

文章目录

  • 0.卷积操作
  • 1.注意力
    • 1.1 注意力概述(Attention)
      • 1.1.1 Encoder-Decoder
      • 1.1.2 查询、键和值
      • 1.1.3 注意力汇聚: Nadaraya-Watson 核回归
    • 1.2 注意力评分函数
      • 1.2.1 加性注意力
      • 1.2.2 缩放点积注意力
    • 1.3 自注意力(Self-Attention)
      • 1.3.1 自注意力的定义和计算
      • 1.3.2 自注意力的应用
      • 1.3.3 Self-Attention 与 CNN 与 RNN
    • 1.4 多头自注意力 (Multihead Attention)
  • 2. Transformer
    • 2.1 Transformer的整体结构
    • 2.2 Transformer的输入
      • 2.2.1 单词Embedding
      • 2.2.2 位置Encoding
    • 2.3 Transformer的Encoder-Decoder
      • 2.3.1 Encoder block
      • 2.3.2 Decoder block
    • 2.4 Transformer的输出
    • 2.5 Transformer的训练过程和损失函数
      • 2.5.1 训练过程
      • 2.5.2 损失函数
    • 2.6 Transformer的代码实现
      • 2.6.1 基于位置的前馈神经网络
      • 2.6.2 残差连接和层规范化
      • 2.6.3 编码器
      • 2.6.4 解码器
      • 2.6.5 训练
  • 3. pytorch中的注意力机制类
    • 3.1 torch.nn.MultiheadAttention
  • 4. Transformer 在计算机视觉领域的应用
    • 4.1 Vision Transformer
      • 4.1.1 ViT的总体结构
      • 4.1.2 Embedding层结构详解
      • 4.1.3 Transformer Encoder详解
      • 4.1.4 MLP Head详解
    • 4.2 Swin Transformer
      • 4.2.1 网络的整体框架
      • 4.2.2 Patch Mering
      • 4.2.3 W-MSA
      • 4.2.4 SW-MSA
  • 参考文献

0.卷积操作

深度学习中的卷积操作:https://blog.csdn.net/zyw2002/article/details/128306697

1.注意力

1.1 注意力概述(Attention)

1.1.1 Encoder-Decoder

Encoder-Decoder框架顾名思义也就是编码-解码框架,在NLP中Encoder-Decoder框架主要被用来处理序列-序列问题。也就是输入一个序列,生成一个序列的问题。这两个序列可以分别是任意长度。

具体到NLP中的任务比如:

  • 文本摘要,输入一篇文章(序列数据),生成文章的摘要(序列数据)
  • 文本翻译,输入一句或一篇英文(序列数据),生成翻译后的中文(序列数据)
  • 问答系统,输入一个question(序列数据),生成一个answer(序列数据)

基于Encoder-Decoder框架具体使用什么模型实现,用的较多的应该就是seq2seq模型和Transformer了。

Encoder-Decoder中的输入和输出

输入
1)输入是一个向量
2)输入是一组向量

输出
1)每一个向量对应一个输出
2)整个序列只输出一个标签
在这里插入图片描述
3)模型自己决定输出序列的长度

Encoder-Decoder中的结构原理

在这里插入图片描述

Encoder:编码器,对于输入的序列<x1,x2,x3…xn>进行编码,使其转化为一个语义编码C,这个C中就储存了序列<x1,x2,x3…xn>的信息。

Encoder 是怎么编码的呢?

编码方式有很多种,在文本处理领域主要有RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU,可以依照自己的喜好来选择编码方式

以RNN为例来具体说明一下:
以上图为例,输入<x1,x2,x3,x4>,通过RNN生成隐藏层的状态值<h1,h2,h3,h4>,如何确定语义编码C呢?最简单的办法直接用最后时刻输出的ht作为C的状态值,这里也就是可以用h4直接作为语义编码C的值,也可以将所有时刻的隐藏层的值进行汇总,然后生成语义编码C的值,这里就是C=q(h1,h2,h3,h4),q是非线性激活函数。

得到了语义编码C之后,接下来就是要在Decoder中对语义编码C进行解码了。

Decoder:解码器,根据输入的语义编码C,然后将其解码成序列数据,解码方式也可以采用RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU

Decoder和Encoder的编码解码方式可以任意组合。

Decoder 是怎么解码的呢?

基于seq2seq模型有两种解码方式:

解码方法1:《Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation》

在这里插入图片描述
该方法指出,因为语义编码C包含了整个输入序列的信息,所以在解码的每一步都引入C。文中Ecoder-Decoder均是使用RNN,在计算每一时刻的输出yt时,都应该输入语义编码C,即
在这里插入图片描述
类似的,下一个符号的条件分布是:

在这里插入图片描述
其中 h t h_t ht为当前t时刻的隐藏层的值, y t − 1 y_{t-1} yt1为上一时刻的预测输出,作为t时刻的输入,每一时刻的语义编码C是相同地。

解码方法2:《Sequence to Sequence Learning with Neural Networks》
在这里插入图片描述
这个编码方式相对简单,只在Decoder的初始输入引入语义编码C,将语义编码C作为隐藏层状态值 h 0 h_0 h0的初始值,
在这里插入图片描述
如上图,该模型读取一个输入句子“ABC”,并产生“WXYZ”作为输出句子。模型在输出句尾标记后停止进行预测。注意,LSTM读取反向输入句子,因为这样做会在数据中引入许多短期依赖关系

基于seq2seq模型有两种解码方式都不太好(两种解码方式都只采用了一个语义编码C),而基于attention模型的编码方式中采用了多个C

在这里插入图片描述
上图就是引入了Attention 机制的Encoder-Decoder框架。咱们一眼就能看出上图不再只有一个单一的语义编码C,而是有多个C1,C2,C3这样的编码。当我们在预测Y1时,可能Y1的注意力是放在C1上,那咱们就用C1作为语义编码,当预测Y2时,Y2的注意力集中在C2上,那咱们就用C2作为语义编码,以此类推,就模拟了人类的注意力机制。

以机器翻译例子"Tom chase Jerry" - "汤姆追逐杰瑞"来说明注意力机制:

当我们在翻译"杰瑞"的时候,为了体现出输入序列中英文单词对于翻译当前中文单词不同的影响程度,比如给出类似下面一个概率分布值:
(Tom,0.3)(Chase,0.2)(Jerry,0.5)

每个英文单词的概率代表了翻译当前单词“杰瑞”时,注意力分配模型分配给不同英文单词的注意力大小。这对于正确翻译目标语单词肯定是有帮助的,因为引入了新的信息。同理,目标句子中的每个单词都应该学会其对应的源语句子中单词的注意力分配概率信息。这意味着在生成每个单词Yi的时候,原先都是相同的中间语义表示C会替换成根据当前生成单词而不断变化的Ci。理解AM模型的关键就是这里,即由固定的中间语义表示C换成了根据当前输出单词来调整成加入注意力模型的变化的Ci。

每个Ci 对应这不同源语句子单词的注意力分配概率,比如对于上面的英汉翻译来说,对应的信息可能如下:
在这里插入图片描述
f2(“Tom”),f2(“Chase”),f2(“Jerry”)就是对应的隐藏层的值h(“Tom”),h(“Chase”),h(“Jerry”)。g函数就是加权求和。αi表示权值分布。因此Ci的公式就可以写成:
在这里插入图片描述

怎么知道attention模型所需要的输入句子单词注意力分配概率分布值 a i j a_{ij} aij呢? 我们可以通过下文介绍的注意力评分函数求得

1.1.2 查询、键和值

下面来看看如何通过自主性的与非自主性的注意力提示, 用神经网络来设计注意力机制的框架。

首先,考虑一个相对简单的状况, 即只使用非自主性提示。 要想将选择偏向于感官输入, 则可以简单地使用参数化的全连接层, 甚至是非参数化的最大汇聚层或平均汇聚层

在注意力机制的背景下,自主性提示被称为查询(query)。 给定任何查询,注意力机制通过注意力汇聚(attention pooling)将选择引导至感官输入(sensory inputs,例如中间特征表示)。在注意力机制中,这些感官输入被称为值(value)。 更通俗的解释,每个值都与一个键(key)配对, 这可以想象为感官输入的非自主提示。
在这里插入图片描述
如上图: 注意力机制通过注意力汇聚(注意力的分配方法)将查询(自主性提示)和键(非自主性提示)结合在一起,实现对值(感官输入)的选择倾向。

1.1.3 注意力汇聚: Nadaraya-Watson 核回归

上图中的注意力汇聚是怎么实现的呢?
可通过Nadaraya-Watson核回归模型来了解常见的注意力汇聚模型平均汇聚非参数注意力汇聚带参数注意力汇聚)。


为什么要在机器学习中引入注意力机制呢?

在全连接层,FC只能考虑相邻的几个数据,但是无法考虑到整个序列。
在这里插入图片描述
注意力机制(self-attention)可以考虑到整个序列的信息。因此,输出的向量带有全局的上下文信息。
在这里插入图片描述

1.2 注意力评分函数

接下来,我们讲解如何通过注意力评分函数来分配注意力。

我们使用高斯核来对查询(query)和键(key)之间的关系建模。 我们可以将高斯核指数部分视为注意力评分函数(attention scoring function), 简称评分函数(scoring function),然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,我们将得到与键对应的值的概率分布(即注意力权重)。最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和

下图说明了如何将注意力汇聚的输出计算成为值的加权和, 其中a表示注意力评分函数。 由于注意力权重是概率分布, 因此加权和其本质上是加权平均值。
在这里插入图片描述
在这里插入图片描述
正如我们所看到的,选择不同的注意力评分函数a会导致不同的注意力汇聚操作。 在本节中,我们将介绍两个流行的评分函数(加性注意力、缩放点积注意力),稍后将用他们来实现更复杂的注意力机制


掩蔽softmax操作

掩蔽softmax操作, 是为实现下文的评分函数做铺垫。

正如上面提到的,softmax操作用于输出一个概率分布作为注意力权重。 在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。 例如,为了高效处理小批量数据集, 某些文本序列被填充了没有意义的特殊词元。 为了仅将有意义的词元作为值来获取注意力汇聚, 我们可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。 通过这种方式,我们可以在下面的masked_softmax函数中 实现这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。

#@save
def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

为了演示此函数是如何工作的, 考虑由两个2×4矩阵表示的样本, 这两个样本的有效长度分别为2和3。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。

masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
tensor([[[0.5423, 0.4577, 0.0000, 0.0000],
         [0.6133, 0.3867, 0.0000, 0.0000]],

        [[0.3324, 0.2348, 0.4329, 0.0000],
         [0.2444, 0.3943, 0.3613, 0.0000]]])

同样,我们也可以使用二维张量,为矩阵样本中的每一行指定有效长度。

masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
         [0.4142, 0.3582, 0.2275, 0.0000]],

        [[0.5565, 0.4435, 0.0000, 0.0000],
         [0.3305, 0.2070, 0.2827, 0.1798]]])

1.2.1 加性注意力

#@save
class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后,
        # queries的形状:(batch_size,查询的个数,1,num_hidden)
        # key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
        # 使用广播方式进行求和
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
        # scores的形状:(batch_size,查询的个数,“键-值”对的个数)
        scores = self.w_v(features).squeeze(-1)
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,“键-值”对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)

我们用一个小例子来演示上面的AdditiveAttention类, 其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小), 实际输出为(2,1,20)、(2,10,2)和(2,10,4)。 注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。

queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values =

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/919499.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DataFrame.query()--Pandas

1. 函数功能 Pandas 中的一个函数&#xff0c;用于在 DataFrame 中执行查询操作。这个方法会返回一个新的 DataFrame&#xff0c;其中包含符合查询条件的数据行。请注意&#xff0c;query 方法只能用于筛选行&#xff0c;而不能用于筛选列。 2. 函数语法 DataFrame.query(ex…

【OJ比赛日历】快周末了,不来一场比赛吗? #08.26-09.01 #16场

CompHub[1] 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…&#xff09;比赛。本账号会推送最新的比赛消息&#xff0c;欢迎关注&#xff01; 以下信息仅供参考&#xff0c;以比赛官网为准 目录 2023-08-26&#xff08;周六&#xff09; #8场比赛2023-08-27…

redis在linux和windows上的安装配置(解决问题:没有可用软件包 redis)

linux系统 安装 yum install redis安装 在终端输入yum install redis安装。 报错&#xff1a;没有可用软件包 redis。 解决&#xff1a; 运行以下命令更新软件包信息&#xff1a; sudo yum clean all sudo yum update 然后继续尝试yum install redis。 如果还不成功&a…

探索最短路径问题:寻找优化路线的算法解决方案

1. 前言&#xff1a;最短路径问题的背景与重要性 在现实生活中&#xff0c;我们常常面临需要找到最短路径的情况&#xff0c;如地图导航、网络路由等。最短路径问题是一个关键的优化问题&#xff0c;涉及在图中寻找两个顶点之间的最短路径&#xff0c;以便在有限时间或资源内找…

最新AI系统ChatGPT程序源码+搭建部署教程/支持GPT4/支持ai绘画/H5端/完整知识库

一、AI系统 如何搭建部署AI创作ChatGPT系统呢&#xff1f;小编这里写一个详细图文教程吧&#xff01; SparkAi使用Nestjs和Vue3框架技术&#xff0c;持续集成AI能力到AIGC系统&#xff01; 程序核心功能&#xff1a; 程序已支持ChatGPT3.5/4.0提问、AI绘画、Midjourney绘画&…

【Axure原型分享】能统计中英文字数的多行输入框

今天和大家分享能统计中英文字数的多行输入框的原型模板&#xff0c;在输入框里输入内容后&#xff0c;能够动态根据输入框的内容&#xff0c;统计出字符数量&#xff0c;包括总字数、中文字数、英文字数、数字字数、其他标点符号的字数&#xff0c;具体效果可以观看下方视频或…

微服务架构2.0--云原生时代

云原生 云原生&#xff08;Cloud Native&#xff09;是一种关注于在云环境中构建、部署和管理应用程序的方法和理念。云原生应用能够最大程度地利用云计算基础设施的优势&#xff0c;如弹性、自动化、可伸缩性和高可用性。这个概念涵盖了许多方面&#xff0c;包括架构、开发、…

DataLoader

机器学习的五个步骤&#xff1a; 数据模块——模型——损失函数——优化器——训练 在实际项目中&#xff0c;如果数据量很大&#xff0c;考虑到内存有限、I/O 速度等问题&#xff0c;在训练过程中不可能一次性的将所有数据全部加载到内存中&#xff0c;也不能只用一个进程去加…

mmdetection基于 PyTorch 的目标检测开源工具箱 入门教程

安装环境 MMDetection 支持在 Linux&#xff0c;Windows 和 macOS 上运行。它需要 Python 3.7 以上&#xff0c;CUDA 9.2 以上和 PyTorch 1.8 及其以上。 1、安装依赖 步骤 0. 从官方网站下载并安装 Miniconda。 步骤 1. 创建并激活一个 conda 环境。 conda create --name…

厦门逗客传媒:抖音本地团购怎么入驻

随着社交媒体的不断发展&#xff0c;短视频平台已经成为了商家推广和营销的热门渠道之一。在这其中&#xff0c;抖音作为全球知名的短视频平台&#xff0c;以其巨大的用户基数和精准的推荐算法吸引了大量商家的关注。而在抖音上&#xff0c;本地团购也成为了一个备受关注的领域…

控制Unity发布的PC包的窗体

大家好&#xff0c;我是阿赵。   用Unity发布PC包接入某些渠道时&#xff0c;有时候会收到一些特殊的需求&#xff0c;比如控制窗口最大化(比如某些情况强制显示窗体)、最小化(比如老板键)、强制规定窗体置顶等。虽然我一直认为这些需求都是流氓软件行为&#xff0c;但作为一…

【每日易题】七夕限定——单身狗问题以及进阶问题位运算法的深入探讨

君兮_的个人主页 勤时当勉励 岁月不待人 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;在写这篇博客的前一天是七夕&#xff0c;也是中国传统的“情人节”&#xff0c;不知道各位脱单了吗&#xff1f;碰巧最近刷题时遇到了经典的单身狗问题想带大家深入探…

消息队列前世今生 字节跳动 Kafka #创作活动

消息队列前世今生 1.1 案例一&#xff1a; 系统崩溃 首先大家跟着我想象一下下面的这个的场景&#xff0c; 看到新出的游戏机&#xff0c;太贵了买不起&#xff0c;这个时候你突然想到&#xff0c;今天抖音直播搞活动&#xff0c;打开抖音搜索&#xff0c;找到直播间以后&am…

JVM——类加载与字节码技术—编译期处理+类加载阶段

3.编译期处理 编译期优化称为语法糖 3.1 默认构造器 3.2 自动拆装箱 java基本类型和包装类型之间的自动转换。 3.3泛型集合取值 在字节码中可以看见&#xff0c;泛型擦除就是字节码中的执行代码不区分是String还是Integer了&#xff0c;统一用Object. 对于取出的Object&…

【ARM】Day9 cortex-A7核I2C实验(采集温湿度)

1. 2、编写IIC协议&#xff0c;采集温湿度值 iic.h #ifndef __IIC_H__ #define __IIC_H__ #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_rcc.h" #include "led.h" /* 通过程序模拟实现I2C总线的时序和协议* GPIOF ---> AHB4* I2C1_S…

IoT DC3 是一个基于 Spring Cloud 的开源的、分布式的物联网(IoT)平台本地部署步骤

dc3 windows 本地搭建步骤&#xff1a; ​​ 必要软件环境 进入原网页# 务必保证至少需要给 docker 分配&#xff1a;1 核 CPU 以及 4G 以上的运行内存&#xff01; JDK : 推荐使用 Oracle JDK 1.8 或者 OpenJDK8&#xff0c;理论来说其他版本也行&#xff1b; Maven : 推荐…

记录《现有docker中安装spark3.4.1》

基础docker环境中存储hadoop3--方便后续查看 参考&#xff1a; 实践&#xff1a; export JAVA_HOME/opt/apache/jdk1.8.0_333 export SPARK_MASTER_IP192.168.0.220 export SPARK_WORKER_MEMORY4g export SPARK_WORKER_CORES2 export SPARK_EXECUTOR_MEMORY4g export HADOOP_H…

『SEQ日志』在 .NET中快速集成轻量级的分布式日志平台

&#x1f4e3;读完这篇文章里你能收获到 如何在Docker中部署 SEQ&#xff1a;介绍了如何创建和运行 SEQ 容器&#xff0c;给出了详细的执行操作如何使用 NLog 接入 .NET Core 应用程序的日志&#xff1a;详细介绍了 NLog 和 NLog.Seq 来配置和记录日志的步骤日志记录示例&…

微服务中间件--MQ

MQ MQa.安装RabbitMQb.消息模型c.SpringAMQP发送和接收d.WorkQueue模型e.发布订阅模型1) FanoutExchange2) DirectExchange3) TopicExchange f.消息转换器 MQ 同步调用的问题 微服务间基于Feign的调用就属于同步方式&#xff0c;存在一些问题。 耦合度高&#xff1a;每次加入…

【网络安全】防火墙知识点全面图解(二)

本系列文章包含&#xff1a; 【网络安全】防火墙知识点全面图解&#xff08;一&#xff09;【网络安全】防火墙知识点全面图解&#xff08;二&#xff09; 防火墙知识点全面图解&#xff08;二&#xff09; 21、路由器的访问控制列表是什么样的&#xff1f;22、防火墙的安全策…