2023年国赛 高教社杯数学建模思路 - 案例:随机森林

news2025/1/13 19:56:38

文章目录

    • 1 什么是随机森林?
    • 2 随机深林构造流程
    • 3 随机森林的优缺点
      • 3.1 优点
      • 3.2 缺点
    • 4 随机深林算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

在这里插入图片描述
决策树 – Decision Tree

在这里插入图片描述
在解释随机森林前,需要先提一下决策树。决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,上面的图片可以直观的表达决策树的逻辑。

随机森林 – Random Forest | RF

在这里插入图片描述
随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

2 随机深林构造流程

在这里插入图片描述

    1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。
    1. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。
    1. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。
    1. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3 随机森林的优缺点

3.1 优点

  • 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  • 它可以判断特征的重要程度
  • 可以判断出不同特征之间的相互影响
  • 不容易过拟合
  • 训练速度比较快,容易做成并行方法
  • 实现起来比较简单
  • 对于不平衡的数据集来说,它可以平衡误差。
  • 如果有很大一部分的特征遗失,仍可以维持准确度。

3.2 缺点

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

4 随机深林算法实现

数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/

import csv
from random import seed
from random import randrange
from math import sqrt


def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
        csvReader = csv.reader(file)
        for line in csvReader:
            dataSet.append(line)
    return dataSet

# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
        for column in range(featLen):
            data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
        fold = []
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataSet_copy))
            fold.append(dataSet_copy.pop(index))  # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataSet_spilt.append(fold)
    return dataSet_spilt

# 构造数据子集
def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
        index = randrange(len(dataSet) - 1)
        subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

# 分割数据集
def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 计算分割代价
def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
        left_size = len(left)
        if left_size != 0:  # 防止除数为零
            prop = [row[-1] for row in left].count(class_value) / float(left_size)
            loss += (prop * (1.0 - prop))
        right_size = len(right)
        if right_size != 0:
            prop = [row[-1] for row in right].count(class_value) / float(right_size)
            loss += (prop * (1.0 - prop))
    return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
        index = randrange(len(dataSet[0]) - 1)
        if index not in features:
            features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
        for row in dataSet:
            left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
            loss = spilt_loss(left, right, class_values)
            if loss < b_loss:#寻找最小分割代价
                b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签
def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
        root['left'] = root['right'] = decide_label(left + right)
        # print 'testing'
        return
    if depth > max_depth:
        root['left'] = decide_label(left)
        root['right'] = decide_label(right)
        return
    if len(left) < min_size:
        root['left'] = decide_label(left)
    else:
        root['left'] = get_best_spilt(left, n_features)
        # print 'testing_left'
        sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
        root['right'] = decide_label(right)
    else:
        root['right'] = get_best_spilt(right, n_features)
        # print 'testing_right'
        sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

        # 构造决策树
def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
# 预测测试集结果
def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
        if isinstance(tree['left'], dict):
            return predict(tree['left'], row)
        else:
            return tree['left']
    else:
        if isinstance(tree['right'], dict):
            return predict(tree['right'], row)
        else:
            return tree['right']
            # predictions=set(predictions)
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
# 创建随机森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
        train = get_subsample(train, ratio)#从切割的数据集中选取子集
        tree = build_tree(train, n_features, max_depth, min_size)
        # print 'tree %d: '%i,tree
        trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
# 计算准确率
def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predict_values[i]:
            correct += 1
    return correct / float(len(actual))


if __name__ == '__main__':
    seed(1) 
    dataSet = loadCSV('sonar-all-data.csv')
    column_to_float(dataSet)#dataSet
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
        train_set = folds[
                    :]  # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
        train_set.remove(fold)#选好训练集
        # print len(folds)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        # print len(train_set)
        test_set = []
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
            # for row in test_set:
            # print row[-1]
        actual = [row[-1] for row in fold]
        predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
        accur = accuracy(predict_values, actual)
        scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/915121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

免费开源大型商城系统_支持商用_无需授权_OctShop

一、OctShop免费开源大型商城系统&#xff0c;支持商用 OctShop是一个免费开源的大型商城系统&#xff0c;无需官方授权就可以直接商用&#xff0c;商城系统集B2B2C和O2O模式于一体。采用前后端分离 八大数据库 分布式系统 微服务架构&#xff0c;支持高并发&#xff0c;非…

Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(31,2)

[ 3.405676] No filesystem could mount root, tried: squashfs [ 3.411546] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(31,2)可能的原因之一&#xff1a; uboot中rootfs分配的大小不够 解决&#xff1a; 修改root到一个合适的大小…

基于启扬RK3399核心板消防控制图形显示装置的解决方案

在我们日常生活中&#xff0c;火灾的发生是不可避免的风险之一&#xff0c;为了能及时发现火灾&#xff0c;并能够迅速采取措施进行灭火和救援&#xff0c;消防系统起着至关重要的作用。而在消防系统中&#xff0c;消防控制室图形显示装置是其中的重要组成部分之一。 消防控制图…

javaScript:七夕特辑-对象的认识与应用(包含日期对象及相关案例)

目录 一.前言 二.认识对象 在js中声明对象的方法 1.直接使用{}声明对象 2.使用构造函数创建对象 获取属性的值 执行对象方法 解释 三.对象的应用 代码 效果图 ​编辑 四.日期对象 1.Date 日期对象 2. getFullYear() 获取当前年份 3.getMonth() 获取当前日期对象…

ethers.js2:provider提供商

1、Provider类 Provider类是对以太坊网络连接的抽象&#xff0c;为标准以太坊节点功能提供简洁、一致的接口。在ethers中&#xff0c;Provider不接触用户私钥&#xff0c;只能读取链上信息&#xff0c;不能写入&#xff0c;这一点比web3.js要安全。 除了之前介绍的默认提供者d…

DataSecurity Plus:守护企业数据安全的坚实屏障

在数字化时代&#xff0c;数据被誉为企业最重要的资产之一。然而&#xff0c;随着大数据的兴起和信息的日益增长&#xff0c;企业面临着前所未有的数据安全挑战。为了应对这些挑战&#xff0c;数据安全管理变得至关重要。在这个领域&#xff0c;ManageEngine的DataSecurity Plu…

TCP滑动窗口

为什么会有滑动窗口 在计算机网络中&#xff0c;数据通常被分成小块&#xff08;也叫数据段&#xff09;在网络中传输&#xff08;为什么会被分成小块&#xff0c;请了解拥塞窗口和流量控制&#xff09;。这些小块可能会在传输的过程中遇到延迟、丢失或乱序等问题。为了保证数据…

学习ts(六)数据类型(元组、枚举、Symbol、never)与类型推论

1.元组 元组&#xff08;Tuple&#xff09;是固定数量的不同类型的元素的组合。是数组的变种。 元组与集合的不同之处在于&#xff0c;元组中的元素类型可以是不同的&#xff0c;而且数量固定。元组的好处在于可以把多个元素作为一个单元传递。如果一个方法需要返回多个值&…

适配器模式实现stack和queue

适配器模式实现stack和queue 什么是适配器模式&#xff1f;STL标准库中stack和queue的底层结构stack的模拟实现queue的模拟实现 什么是适配器模式&#xff1f; 适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结)&#xff…

微信小程序最新获取头像和昵称的方法 直接用!

调整背景 微信小程序获取用户头像和昵称一个开放接口是wx.getUserInfo&#xff0c;2021年4月5日被废弃&#xff0c;原因是很多开发者在打开小程序时就通过组件方式唤起getUserInfo弹窗&#xff0c;如果用户点击拒绝&#xff0c;无法使用小程序&#xff0c;这种做法打断了用户正…

Camunda_4:监听器相关

Camunda的监听器非常之多&#xff0c;常见的如任务监听与执行监听。我们可以实现相关监听器进行相关操作。 首先明确的是&#xff0c;当执行到某一个节点时&#xff0c;会先进入执行监听&#xff0c;然后进入任务监听。 执行监听和任务监听主要监听以下阶段。 然后我们就能去…

excel中如果A列中某项有多条记录,针对A列中相同的项,将B列值进行相加合并统计

excel中如果A列中某项有多条记录&#xff0c;针对A列中相同的项&#xff0c;将B列值进行相加合并统计。 如&#xff1a; 实现方法&#xff1a; C1、D1中分别输入公式&#xff0c;然后下拉 IF(COUNTIF($A$1:A1,A1)1, A1,"") #A1根据实际情况调整&#xff0c;如果…

学习笔记|课后练习解答|电磁炉LED实战|逻辑运算|STC32G单片机视频开发教程(冲哥)|第八集(下):课后练习分析与解答

课后练习解答 增加按键3&#xff0c;按下后表示启动&#xff0c;选择的对应的功能的LED持续闪烁&#xff0c;表示正在工作&#xff0c;且在工作的时候无法切换功能。 需求分解 1 增加按键3 #define KEY3 P34 //增加按键32 按下后表示启动 电平控制3 工作状态锁定 表示正在…

IDEA项目实践——mybatis实践,创建一个父目录专门存放mybatis项目

系列文章目录 IDEA创建项目的操作步骤以及在虚拟机里面创建Scala的项目简单介绍_intellij 创建scala IDEA项目实践——创建Java项目以及创建Maven项目案例、使用数据库连接池创建项目简介 IDEWA项目实践——mybatis的一些基本原理以及案例 IDEA项目实践——动态SQL、关系映…

方案:AI边缘计算智慧工地解决方案

一、方案背景 在工程项目管理中&#xff0c;工程施工现场涉及面广&#xff0c;多种元素交叉&#xff0c;状况较为复杂&#xff0c;如人员出入、机械运行、物料运输等。特别是传统的现场管理模式依赖于管理人员的现场巡查。当发现安全风险时&#xff0c;需要提前报告&#xff0…

【SpringSecurity】四、登录处理器

文章目录 1、登录成功处理器2、登录失败处理器3、无权限处理器4、登出&#xff08;退出&#xff09;处理器5、安全配置类WebSecurityConfig 前后端分离背景下&#xff0c;前后端通过json进行交互&#xff0c;登录成功或失败&#xff0c;返回的不是一个html页面&#xff0c;而是…

python 基础篇 day 2 基本输入输出转换

文章目录 输入函数——input()原型示例注意 输出函数——print()原型示例 数据类型转换转换路径图示格式举例int(x)float(x)bool(x) 注意 格式化输出法一&#xff1a;%格式 类型表举例第二种&#xff1a;format格式类型表举例第三种&#xff1a;f &#xff08;format简化版&…

论文速递 Nature 2023 | Heat-assisted detection and ranging

注1:本文系“计算成像最新论文速览”系列之一,致力于简洁清晰地介绍、解读非视距成像领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, SIGGRAPH, TPAMI; Light‐Science & Applications, Optica 等)。 本次介绍的论文是: 2023年,Nature,“…

2023年国赛 高教社杯数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 最短时…

6个比较火的AI绘画生成工具

随着人工智能技术的发展&#xff0c;市场上出现了越来越多的人工智能图像生成工具。这些人工智能图像生成工具可以自动创建惊人的图像、艺术作品和设计&#xff0c;以帮助设计师和创意人员更快地实现他们的创造性想法。在本文中&#xff0c;我们将推荐7种最近流行的人工智能图像…