设计模式之职责链模式(ChainOfResponsibility)的C++实现

news2024/11/24 18:25:53

1、职责链模式的提出

在软件开发过程中,发送者经常发送一个数据请求给特定的接收者对象,让其对请求数据进行处理(一个数据请求只能有一个对象对其处理)。如果发送的每个数据请求指定特定的接收者, 将带来发送者与接收者的紧密解耦合问题。职责链模式可以将请求发送者与接收者解耦。职责链模式的处理流程是:设计一个职责链处理基类,该类具有指向下一个待处理类的变量,通过set接口设置下一个待处理的链对象成员;该类具有遍历处理请求的功能,遍历过程中,只要有一个对象处理了请求,则停止遍历;该基类抽象了2个接口分别为:判断是否处理该类型请求和处理消息的功能接口。其他的具体职责链类继承并实现职责链基类的接口。

2、需求描述

有3个职责功能类,每个职责类都只能对特定的请求数据类型进行处理,现有3个请求类型。设计一个能处理不同数据请求的功能代码,该功能代码具有良好的扩展性。数据请求的类型包括:请求类型和描述信息。

3、功能实现

(1)UML图如下:

 

(2)代码实现如下:

#include <iostream>
#include <string>
enum class EmType
{
    EM_TYPE_A,
    EM_TYPE_B,
    EM_TYPE_C
};

class RequestData
{
private:
    std::string m_strDesc;
    EmType      m_emType;
public:
    RequestData(const std::string& desc,EmType type):m_strDesc(std::move(desc)),m_emType(type){};
    EmType  getType()const{return m_emType;};
    const std::string getDesc()const{return m_strDesc;};
};


class ChainHandler
{
protected:
    ChainHandler* nextChain{nullptr};
    virtual void processHandler(const RequestData& request)=0;
    virtual bool IsHandlerType(const RequestData& request)=0;
public:
    void setNextChain(ChainHandler* next)
    {
      nextChain = next;
    };

    void handle(const RequestData& req)
    {
        if(IsHandlerType(req))
        {
            processHandler(req);
        }else
        {
            if(nextChain != nullptr)
            {
                nextChain->handle(req);
            }
        }
    }
    virtual ~ChainHandler(){};
};

class HanderA:public ChainHandler
{
public:
    virtual bool IsHandlerType(const RequestData &request) override
    {
        if(request.getType() == EmType::EM_TYPE_A)
        {
            return true;
        }else
        {
            std::cout << "HanderA cannot process the request:" << request.getDesc() << std::endl;
            return false;
        }

    }
    virtual void processHandler(const RequestData& request) override
    {
        std::cout << "HanderA is processing the request: " << request.getDesc() << std::endl;
    }
};

class HanderB:public ChainHandler
{
public:
    virtual bool IsHandlerType(const RequestData &request) override
    {
        if(request.getType() == EmType::EM_TYPE_B)
        {
            return true;
        }else
        {
            std::cout << "HanderB cannot process the request:" << request.getDesc() << std::endl;
            return false;
        }
    }
    virtual void processHandler(const RequestData& request) override
    {
        std::cout << "HanderB is processing the request: " << request.getDesc() << std::endl;
    }
};

class HanderC:public ChainHandler
{
public:
    virtual bool IsHandlerType(const RequestData &request) override
    {
        if(request.getType() == EmType::EM_TYPE_C)
        {
            return true;
        }else
        {
            std::cout << "HanderC cannot process the request:" << request.getDesc() << std::endl;
            return false;
        }
    }
    virtual void processHandler(const RequestData& request) override
    {
        std::cout << "HanderC is processing the request: " << request.getDesc() << std::endl;
    }
};

class Client
{
public:
    void doWork()
    {
        ChainHandler* handlerA = new HanderA();
        ChainHandler* handlerB = new HanderB();
        ChainHandler* handlerC = new HanderC();
        handlerA->setNextChain(handlerB);
        handlerB->setNextChain(handlerC);

        RequestData reqA("DataA need to handle",EmType::EM_TYPE_A);
        handlerA->handle(reqA);
        std::cout << "\n************** next Request ********************\n" << std::endl;
        RequestData reqC("DataC need to handle",EmType::EM_TYPE_C);
        handlerA->handle(reqC);

        delete handlerA;
        delete handlerB;
        delete handlerC;

        handlerA = nullptr;
        handlerB = nullptr;
        handlerC = nullptr;
    }
};

int main()
{
    Client obj;
    obj.doWork();
    return 0;
}

 程序运行结果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/914420.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023-08-22 LeetCode每日一题(到最近的人的最大距离)

2023-08-22每日一题 一、题目编号 849. 到最近的人的最大距离二、题目链接 点击跳转到题目位置 三、题目描述 给你一个数组 seats 表示一排座位&#xff0c;其中 seats[i] 1 代表有人坐在第 i 个座位上&#xff0c;seats[i] 0 代表座位 i 上是空的&#xff08;下标从 0 …

第八章,帖子列表

8.1添加帖子列表 <script> import { mapState } from vuex . . . </script> computed: {...mapState([auth,user,articles]) }, <Message :sh

ubuntu18.04安装keil5并迁移stm32项目(踩坑)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、安装winewine的总结 二、安装Keil5总结 前言 切记看完再享用&#xff0c;别直接上手&#xff0c;不然安装的时候会和我一样踩坑的&#xff08;走了很多弯路…

【Spring】Spring循环依赖的处理

循环依赖是指两个或多个组件之间相互依赖&#xff0c;形成一个闭环&#xff0c;从而导致这些组件无法正确地被初始化或加载。这种情况可能会在软件开发中引起问题&#xff0c;因为循环依赖会导致初始化顺序混乱&#xff0c;组件之间的关系变得复杂&#xff0c;甚至可能引发死锁…

数学建模(四)整数规划—匈牙利算法

一、0-1型整数规划问题 1.1 案例 投资问题&#xff1a; 有600万元投资5个项目&#xff0c;收益如表&#xff0c;求利润最大的方案? 设置决策变量&#xff1a; 模型&#xff1a; 指派问题&#xff1a; 甲乙丙丁四个人&#xff0c;ABCD四项工作&#xff0c;要求每人只能做一项…

Linux系统安全——NAT(SNAT、DNAT)

目录 NAT SNAT SNAT实际操作 DNAT DNAT实际操作 NAT NAT: network address translation&#xff0c;支持PREROUTING&#xff0c;INPUT&#xff0c;OUTPUT&#xff0c;POSTROUTING四个链 请求报文&#xff1a;修改源/目标IP&#xff0c; 响应报文&#xff1a;修改源/目标…

【jvm】双亲委派机制

目录 一、说明二、工作原理三、图示 一、说明 1.java虚拟机对class文件采用的是按需加载的方式&#xff0c;当需要使用该类时才会将它的class文件加载到内存生成class对象 2.加载某个类的class文件时&#xff0c;java虚拟机采用双亲委派模式&#xff0c;即把请求交给由父类处理…

2023年计算机设计大赛国三 数据可视化 (源码可分享)

2023年暑假参加了全国大学生计算机设计大赛&#xff0c;并获得了国家三等奖&#xff08;国赛答辩出了点小插曲&#xff09;。在此分享和记录本次比赛的经验。 目录 一、作品简介二、作品效果图三、设计思路四、项目特色 一、作品简介 本项目实现对农产品近期发展、电商销售、灾…

【QT5-自我学习-线程qThread练习-两种使用方式-1:通过继承线程类来使用-基础样例】

【QT5-自我学习-线程qThread练习-两种使用方式-1&#xff1a;通过继承线程类来使用-基础样例】 1、前言2、实验环境3-1、学习链接-参考文章3-2、先前了解-自我总结&#xff08;1&#xff09;线程处理逻辑事件&#xff0c;不能带有主窗口的事件&#xff08;2&#xff09;一般考虑…

Debootstrap 教程

文章目录 Debootstrap 教程安装 debootstrap使用 debootstrap运行 debootstrap进入新的系统结束语 Debootstrap 教程 debootstrap 是一个用于在 Debian-based 系统上创建一个基本的 Debian 系统的工具。它可以用于创建 chroot 环境、容器或者为新的系统安装做准备。 安装 deb…

数学建模-模型详解(2)

微分模型 当谈到微分模型时&#xff0c;通常指的是使用微分方程来描述某个系统的动态行为。微分方程是描述变量之间变化率的数学方程。微分模型可以用于解决各种实际问题&#xff0c;例如物理学、工程学、生物学等领域。 微分模型可以分为两类&#xff1a;常微分方程和偏微分…

基于Linux操作系统中的shell脚本

目录 前言 一、概述 1、什么是shell&#xff1f; 2、shell脚本的用途有哪些&#xff1f; 3、常见的shell有哪些&#xff1f; 4、学习shell应该从哪几个方面入手&#xff1f; 4.1、表达式 1&#xff09;变量 2&#xff09;运算符 4.2、语句 1&#xff09;条件语句&am…

【LeetCode-中等题】3. 无重复字符的最长子串

题目 题解一&#xff1a;单指针&#xff0c;滑动窗口 思路&#xff1a; 设置一个左指针&#xff0c;来判断下一个元素是否在set集合中&#xff0c;如果不在&#xff0c;就加入集合&#xff0c;right继续&#xff0c;如果在&#xff0c;就剔除重复的元素&#xff0c;计算串的长度…

C++笔记之设计模式:setter函数、依赖注入

C笔记之设计模式&#xff1a;setter函数、依赖注入 code review! 文章目录 C笔记之设计模式&#xff1a;setter函数、依赖注入1.概念2.基本示例3.setter函数4.基本示例setter函数构成依赖注入5.概念——ChatGpt6.构造函数注入示例7.接口注入示例8. 构造函数注入的使用场景和用…

【C++】早绑定、析构与多态 | 一道关于多态的选择题记录

今天在和群友聊天的时候看到了一道很坑的题目&#xff0c;分享给大家 1.看题&#xff01; 先来看看题目 struct Dad { public:Dad(){ echo();}~Dad(){ echo();}virtual void echo() {cout << "DAD ";} };struct Son:Dad { public:void echo() const override…

ARM,(cortex-A7核中断实验)

1.实验目的&#xff1a;实现KEY1/LEY2/KE3三个按键&#xff0c;中断触发打印一句话&#xff0c;并且灯的状态取反&#xff1b; key1 ----> LED3灯状态取反&#xff1b; key2 ----> LED2灯状态取反&#xff1b; key3 ----> LED1灯状态取反&#xff1b; 2.分析框图: …

<深度学习基础> 激活函数

为什么需要激活函数&#xff1f;激活函数的作用&#xff1f; 激活函数可以引入非线性因素&#xff0c;可以学习到复杂的任务或函数。如果不使用激活函数&#xff0c;则输出信号仅是一个简单的线性函数。线性函数一个一级多项式&#xff0c;线性方程的复杂度有限&#xff0c;从…

vue3 01-setup函数

1.setup函数的作用: 1.是组合式api的入口2.比beforeCreate 执行更早3.没有this组件实例一开始创建vue3页面的时候是这样的 <template></template> <script> export default{setup(){return{ }} } </script>给容器传参在页面中显示 数据给模板使用,以…

【C语言】位段,枚举和联合体详解

目录 1.位段 1.1 什么是位段 1.2 位段的内存分配 1.3 位段的跨平台问题 2.枚举 2.1 枚举类型的定义 2.2 枚举的优点 3. 联合&#xff08;共用体&#xff09; 3.1 联合类型的定义 3.2 联合的特点 3.3 联合大小的计算 1.位段 1.1 什么是位段 位段的声明和结构体是类…

基于ECharts+flask的爬虫可视化

项目效果。 本案例基于python的flask框架&#xff0c;通过爬虫程序将数据存储在csv文件中&#xff0c;在项目运行时会通过render_template映射出对应的页面&#xff0c;并且触发一个函数&#xff0c;该函数会读取csv文件的数据将之交给echarts渲染 &#xff0c;echarts将之渲染…