2023年国赛数学建模思路 - 案例:随机森林

news2024/12/23 13:11:56

文章目录

    • 1 什么是随机森林?
    • 2 随机深林构造流程
    • 3 随机森林的优缺点
      • 3.1 优点
      • 3.2 缺点
    • 4 随机深林算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

在这里插入图片描述
决策树 – Decision Tree

在这里插入图片描述
在解释随机森林前,需要先提一下决策树。决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,上面的图片可以直观的表达决策树的逻辑。

随机森林 – Random Forest | RF

在这里插入图片描述
随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

2 随机深林构造流程

在这里插入图片描述

    1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。
    1. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。
    1. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。
    1. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3 随机森林的优缺点

3.1 优点

  • 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  • 它可以判断特征的重要程度
  • 可以判断出不同特征之间的相互影响
  • 不容易过拟合
  • 训练速度比较快,容易做成并行方法
  • 实现起来比较简单
  • 对于不平衡的数据集来说,它可以平衡误差。
  • 如果有很大一部分的特征遗失,仍可以维持准确度。

3.2 缺点

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

4 随机深林算法实现

数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/

import csv
from random import seed
from random import randrange
from math import sqrt


def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
        csvReader = csv.reader(file)
        for line in csvReader:
            dataSet.append(line)
    return dataSet

# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
        for column in range(featLen):
            data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
        fold = []
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataSet_copy))
            fold.append(dataSet_copy.pop(index))  # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataSet_spilt.append(fold)
    return dataSet_spilt

# 构造数据子集
def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
        index = randrange(len(dataSet) - 1)
        subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

# 分割数据集
def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 计算分割代价
def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
        left_size = len(left)
        if left_size != 0:  # 防止除数为零
            prop = [row[-1] for row in left].count(class_value) / float(left_size)
            loss += (prop * (1.0 - prop))
        right_size = len(right)
        if right_size != 0:
            prop = [row[-1] for row in right].count(class_value) / float(right_size)
            loss += (prop * (1.0 - prop))
    return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
        index = randrange(len(dataSet[0]) - 1)
        if index not in features:
            features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
        for row in dataSet:
            left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
            loss = spilt_loss(left, right, class_values)
            if loss < b_loss:#寻找最小分割代价
                b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签
def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
        root['left'] = root['right'] = decide_label(left + right)
        # print 'testing'
        return
    if depth > max_depth:
        root['left'] = decide_label(left)
        root['right'] = decide_label(right)
        return
    if len(left) < min_size:
        root['left'] = decide_label(left)
    else:
        root['left'] = get_best_spilt(left, n_features)
        # print 'testing_left'
        sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
        root['right'] = decide_label(right)
    else:
        root['right'] = get_best_spilt(right, n_features)
        # print 'testing_right'
        sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

        # 构造决策树
def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
# 预测测试集结果
def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
        if isinstance(tree['left'], dict):
            return predict(tree['left'], row)
        else:
            return tree['left']
    else:
        if isinstance(tree['right'], dict):
            return predict(tree['right'], row)
        else:
            return tree['right']
            # predictions=set(predictions)
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
# 创建随机森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
        train = get_subsample(train, ratio)#从切割的数据集中选取子集
        tree = build_tree(train, n_features, max_depth, min_size)
        # print 'tree %d: '%i,tree
        trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
# 计算准确率
def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predict_values[i]:
            correct += 1
    return correct / float(len(actual))


if __name__ == '__main__':
    seed(1) 
    dataSet = loadCSV('sonar-all-data.csv')
    column_to_float(dataSet)#dataSet
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
        train_set = folds[
                    :]  # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
        train_set.remove(fold)#选好训练集
        # print len(folds)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        # print len(train_set)
        test_set = []
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
            # for row in test_set:
            # print row[-1]
        actual = [row[-1] for row in fold]
        predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
        accur = accuracy(predict_values, actual)
        scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/914225.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AP9235 dc-dc升压恒流电源驱动IC 2.8-30V 输出电流2A SOT23-6

概述 AP9235B 系列是一款固定振荡频率、恒流输出的升压型DC/DC转换器&#xff0c;非常适合于移动电话、PDA、数码相机等电子产品的背光驱动。输出电压可达30V &#xff0c;3.2V输入电压可以驱动六个串联LED&#xff0c; 2.5V输入电压可以驱动两路并联LED&#xff08;每路串联…

你不知道的 malloc 内幕

你不知道的 malloc 内幕 1. 引言&#xff1a;一个例子例1例2 2. 基础概念2.1 内存管理发展过程2.2 虚拟存储器2.3 内存分配机制2.4 VMA2.4.1 进程的 VMA2.4.2 vma 分析 3. 实例分析3.1 malloc 到底干了啥3.2 memset 的偷天换日3.2.1 虚拟地址转物理地址3.2.2 page fault 3.3 fr…

线程池UncaughtExceptionHandler无效?可能是使用方式不对

背景 在业务处理中&#xff0c;使用了线程池来提交任务执行&#xff0c;但是今天修改了一小段代码&#xff0c;发现任务未正确执行。而且看了相关日志&#xff0c;也并未打印结果。 源码简化版如下&#xff1a; 首先&#xff0c;自定义了一个线程池 public class NamedThrea…

iMX6ULL QT环境配置 | CMake在Linux下的交叉编译环境搭建及使用

习惯了使用cmake&#xff0c;再也不想回到手写makefile的年代了。相比手写makefile&#xff0c;使用cmake则像是实现了机动化&#xff0c;管理项目工程的编译变得很简单了。况且cmake很流行&#xff0c;linux下的很多软件源码包&#xff0c;很多也都使用了cmake的方式编译。因此…

大数据课程K4——Spark的DAGRDD依赖关系

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的DAG; ⚪ 掌握Spark的RDD的依赖关系; ⚪ 了解Spark对于DAG的Stage的划分; 一、DAG概念 1. 概述 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关…

Android JNI系列详解之AS创建Native C++项目

一、前提 Android Studio版本&#xff1a;Android Studio Electric Eel | 2022.1.1 Patch 1 二、创建Native C项目 1.新建项目 2.选择新建Native C项目 3.New Project 4.选择C标准库的支持版本 5.项目自带的默认生成的代码 6.buil.gradle中也自带了CMakeList的配置&#xff08;…

详细了解G1、了解G1、G1垃圾收集器详解、G1垃圾回收器简单调优

4.详细了解G1&#xff1a; 4.1.一&#xff1a;什么是垃圾回收 4.2.了解G1 4.3.G1 Yong GC 4.4.G1 Mix GC 4.5.三色标记算法 4.6.调优实践 5.G1垃圾收集器详解 5.1.G1垃圾收集器 5.2.G1的堆内存划分 5.3.G1的运行过程 5.4.三色标记 5.4.1.漏标问题 5.5.记忆集与卡表 5.6.安全点与…

开发小技巧(逐步完善)

一、验证码 1&#xff09;将 大小写字母 和 数字 存储在字符数组中 2&#xff09;用随机数的方式生成随机码 3&#xff09;采用字符串的方式存储验证码即可 import java.util.Random;public class TEST {public static void main(String[] args) {char[] chs new char[62];//…

小程序中的全局配置以及常用的配置项(window,tabBar)

全局配置文件和常用的配置项 app.json: pages:是一个数组&#xff0c;用于记录当前小程序所有页面的存放路径&#xff0c;可以通过它来创建页面 window:全局设置小程序窗口的外观(导航栏&#xff0c;背景&#xff0c;页面的主体) tabBar:设置小程序底部的 tabBar效果 style:是否…

存储IO路径:Linux下的“快递之旅”

相信大家都有过网购的经历,当我们在电商平台上浏览心仪的商品并下单时,快递小哥会负责将物品从商家手中送至我们手中。在这个过程中,快递小哥需要经过一系列的流程才能将物品准确送达。同样,在Linux系统中,当用户下发一笔读写操作时,这些数据也需要经过一系列的流程才能最…

uniapp 回退到指定页面 保存页面状态

uniapp 历史页面回退到指定页面。 getCurrentPages() 内容如下 let delta getCurrentPages().reverse().findIndex(item > item.route "pages/popularScience/daodi") if(delta-1){uni.navigateTo({url: /pages/popularScience/daodi,success: res > {},fa…

【数据结构练习】链表面试题锦集一

目录 前言&#xff1a; 1. 删除链表中所有值为key的节点 方法一&#xff1a;正常删除&#xff0c;头结点另外讨论 方法二:虚拟头结点法 方法三&#xff1a;递归 2.反转链表 方法一&#xff1a;双指针迭代 方法二&#xff1a;递归法解析&#xff1a; 3.链表的中间结点 方法…

动态规划:删除并获得点数

题目来源&#xff1a;删除并获得点数 题目分析 题目分析&#xff1a; 从题目中可以获取到的条件是&#xff0c;如果选择了i位置&#xff0c;那么就必须删除与i-1和i1的位置的值相同的所有的值。 既然要删除相同的值&#xff0c;那么我们可以想&#xff0c;要不要先排序&…

捕捉现货白银短期波动办法

有的投资者认为&#xff0c;在现货白银市场中&#xff0c;投资最适合的就是使用短线投资方法。因为短线投资可以充分发挥现货白银波动灵活的特点&#xff0c;尤其是对资金量少的投资者更是如此。确实&#xff0c;现货白银确实是比较适合进行短线投资&#xff0c;那么下面我们就…

图像检索,目标检测map的实现

一、图像检索指标Rank1,map 参考&#xff1a;https://blog.csdn.net/weixin_41427758/article/details/81188164?spm1001.2014.3001.5506 1.Rank1: rank-k&#xff1a;算法返回的排序列表中&#xff0c;前k位为存在检索目标则称为rank-k命中。 常用的为rank1&#xff1a;首…

Linux: 使用 ssh 连接其他服务器

通过ifconfig 查看要连接的服务器地址&#xff1a; ubuntuubuntu1804-0172:/media/sangfor/vdc$ ssh ubuntu192.168.11.49 输入要连接的服务器密码: ubuntua192.168.1149 s password: 连接服务器成功&#xff1a;

二、pikachu之SQL注入(2)

文章目录 1、delete注入2、http header注入3、布尔盲注4、时间盲注 4、宽字节注入 1、delete注入 &#xff08;1&#xff09;寻找传参页面&#xff0c;在删除留言的时候&#xff0c;发现是get传参&#xff1b; &#xff08;2&#xff09;判断是否存在注入点&#xff0c;命令&…

创建Ingress实例

部署deployment和service apiVersion: apps/v1 kind: Deployment metadata:creationTimestamp: nulllabels:app: webname: webnamespace: dalong spec:replicas: 2selector:matchLabels:app: webstrategy: {}template:metadata:creationTimestamp: nullspec:containers:- ima…

LabVIEW硬件在环仿真模拟电路故障分析和特征提取

LabVIEW硬件在环仿真模拟电路故障分析和特征提取 与数字电路相比&#xff0c;模拟电路故障分析是一项具有挑战性的任务。这主要是由于模拟分立元件的非线性特性&#xff0c;以及其他因素&#xff0c;包括噪声和内部可访问性的限制。参数故障和灾难性故障是模拟电路中发生的两种…

写之前的项目关于使用git remote -v 找不到项目地址的解决方案

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、报错解析1. 报错内容2. 报错翻译3. 报错解析&#xff08;1&#xff09;使用git branch来查看git仓库有几个分支&#xff08;2&#xff09;使用git remote -v&am…