嵌入式Linux应用开发基础知识
- 一、GCC编译过程
- 二、Makefile
- Makefile的引入及规则
- Makefile的语法
- a. 通配符
- b. 假想目标: .PHONY
- C. 变量
- Makefile函数
- 函数foreach
- 函数filter/filter-out
- Wildcard
- patsubst函数
- Makefile实例
- 通用Makefike
- Makefike
- Makefile.build
- 说明.txt
- 三、TCP
- server.c
- client.c
- 四、UDP
- server.c
- client1.c
- client2.c
- 五、多线程
- 互斥访问
- 同步操作(互斥+条件变量)
- 六、 串口
一、GCC编译过程
程序报错是在预处理.o完成产生汇编程序.s时报错的
二、Makefile
Makefile的引入及规则
使用keil, mdk,avr等工具开发程序时点击鼠标就可以编译了,它的内部机制是什么?它怎么组织管理程序?怎么决定编译哪一个文件?
答:实际上windows工具管理程序的内部机制,也是Makefile,我们在linux下来开发裸板程序的时候,使用Makefile组织管理这些程序,本节我们来讲解Makefile最基本的规则。Makefile要做什么事情呢?
组织管理程序,组织管理文件,我们写一个程序来实验一下:
文件a.c
02 #include <stdio.h>
03
04 int main()
05 {
06 func_b();
07 return 0;
08}
文件b.c
2 #include <stdio.h>
3
4 void func_b()
5 {
6 printf("This is B\n");
7 }
编译:
gcc -o test a.c b.c
运行:
./test
结果:
This is B
gcc -o test a.c b.c 这条命令虽然简单,但是它完成的功能不简单。
我们来看看它做了哪些事情,
我们知道.c程序 ==》 得到可执行程序它们之间要经过四个步骤:
- 1.预处理
- 2.编译
- 3.汇编
- 4.链接
我们经常把前三个步骤统称为编译了。我们具体分析:gcc -o test a.c b.c这条命令
它们要经过下面几个步骤:
- 1)对于a.c:执行:预处理 编译 汇编 的过程,a.c ==>xxx.s ==>xxx.o 文件。
- 2)对于b.c:执行:预处理 编译 汇编 的过程,b.c ==>yyy.s ==>yyy.o 文件。
- 3)最后:xxx.o和yyy.o链接在一起得到一个test应用程序。
提示:gcc -o test a.c b.c -v :加上一个**‘-v’**选项可以看到它们的处理过程,
第一次编译 a.c 得到 xxx.o 文件,这是很合乎情理的, 执行完第一次之后,如果修改 a.c 又再次执行:gcc -o test a.c b.c,对于 a.c 应该重新生成 xxx.o,但是对于 b.c 又会重新编译一次,这完全没有必要,b.c 根本没有修改,直接使用第一次生成的 yyy.o 文件就可以了。
缺点:对所有的文件都会再处理一次,即使 b.c 没有经过修改,b.c 也会重新编译一次,当文件比较少时,这没有没有什么问题,当文件非常多的时候,就会带来非常多的效率问题如果文件非常多的时候,我们,只是修改了一个文件,所用的文件就会重新处理一次,编译的时候就会等待很长时间。
对于这些源文件,我们应该分别处理,执行:预处理 编译 汇编,先分别编译它们,最后再把它们链接在一次,比如:
编译:
gcc -o a.o a.c
gcc -o b.o b.c
链接:
gcc -o test a.o b.o
比如:上面的例子,当我们修改a.c之后,a.c会重现编译然后再把它们链接在一起就可以了。b.c
就不需要重新编译。
那么问题又来了,怎么知道哪些文件被更新了/被修改了?
比较时间:比较 a.o 和 a.c 的时间,如果a.c的时间比 a.o 的时间更加新的话,就表明 a.c 被修改了,同理b.o和b.c也会进行同样的比较。比较test和 a.o,b.o 的时间,如果a.o或者b.o的时间比test更加新的话,就表明应该重新生成test。Makefile
就是这样做的。我们现在来写出一个简单的Makefile:
makefie最基本的语法是规则,规则:
目标 : 依赖1 依赖2 ...
[TAB]命令
当“依赖”比“目标”新,执行它们下面的命令。我们要把上面三个命令写成makefile规则,如下:
test :a.o b.o //test是目标,它依赖于a.o b.o文件,一旦a.o或者b.o比test新的时候,
就需要执行下面的命令,重新生成test可执行程序。
gcc -o test a.o b.o
a.o : a.c //a.o依赖于a.c,当a.c更加新的话,执行下面的命令来生成a.o
gcc -c -o a.o a.c
b.o : b.c //b.o依赖于b.c,当b.c更加新的话,执行下面的命令,来生成b.o
gcc -c -o b.o b.c
我们来作一下实验:
在改目录下我们写一个Makefile文件:
文件:Makefile
1 test:a.o b.o
2 gcc -o test a.o b.o
3
4 a.o : a.c
5 gcc -c -o a.o a.c
6
7 b.o : b.c
8 gcc -c -o b.o b.c
上面是makefile中的三条规则。makefile,就是名字为“makefile”的文件。当我们想编译程序时,直接执行make命令就可以了,一执行make命令它想生成第一个目标test可执行程序,
如果发现a.o 或者b.o没有,就要先生成a.o或者b.o,发现a.o依赖a.c,有a.c但是没有a.o,他就会认为a.c比a.o新,就会执行它们下面的命令来生成a.o,同理b.o和b.c的处理关系也是这样的。
如果修改a.c ,我们再次执行make,它的本意是想生成第一个目标test应用程序,它需要先生成a.o,发现a.o依赖a.c(执行我们修改了a.c)发现a.c比a.o更加新,就会执行gcc -c -o a.o
a.c命令来生成a.o文件。b.o依赖b.c,发现b.c并没有修改,就不会执行gcc -c -o b.o
b.c来重新生成b.o文件。现在a.o b.o都有了,其中的a.o比test更加新,就会执行 gcc -o
test a.ob.o来重新链接得到test可执行程序。所以当执行make命令时候就会执行下面两条执行:
gcc -c -o a.o a.c
gcc -o test a.o b.o
我们第一次执行make的时候,会执行下面三条命令(三条命令都执行):
gcc -c -o a.o a.c
gcc -c -o b.o b.c
gcc -o test a.o b.o
再次执行make 就会显示下面的提示:
make: `test' is up to date.
我们再次执行make就会判断Makefile文件中的依赖,发现依赖没有更新,所以目标文件就不会重现生成,就会有上面的提示。当我们修改a.c后,重新执行make,
就会执行下面两条指令:
gcc -c -o a.o a.c
gcc -o test a.o b.o
我们同时修改a.c b.c,执行make就会执行下面三条指令。
gcc -c -o a.o a.c
gcc -c -o b.o b.c
gcc -o test a.o b.o
a.c文件修改了,重新编译生成a.o, b.c修改了重新编译生成b.o,a.o,b.o都更新了重新链接生成test可执行程序,makefile的规则其实还是比较简单的。规则是Makefie的核心,
执行make命令的时候,就会在当前目录下面找到名字为:Makefile的文件,根据里面的内容来执行里面的判断/命令。
Makefile的语法
本节我们只是简单的讲解Makefile的语法,如果想比较深入
学习Makefile的话可以:
- a. 百度搜 “gnu make 于凤昌”。
- b. 查看官方文档: http://www.gnu.org/software/make/manual/
a. 通配符
假如一个目标文件所依赖的依赖文件很多,那样岂不是我们要写很多规则,这显然是不合乎常理的
我们可以使用通配符,来解决这些问题。
我们对上节程序进行修改代码如下:
test: a.o b.o
gcc -o test $^
%.o : %.c
gcc -c -o $@ $<
%.o:表示所用的.o文件
%.c:表示所有的.c文件
$@:表示目标
$<:表示第1个依赖文件
$^:表示所有依赖文件
我们来在该目录下增加一个 c.c 文件,代码如下:
#include <stdio.h>
void func_c()
{
printf("This is C\n");
}
然后在main函数中调用修改Makefile,修改后的代码如下:
test: a.o b.o c.o
gcc -o test $^
%.o : %.c
gcc -c -o $@ $<
执行:
make
结果:
gcc -c -o a.o a.c
gcc -c -o b.o b.c
gcc -c -o c.o c.c
gcc -o test a.o b.o c.o
运行:
./test
结果:
This is B
This is C
b. 假想目标: .PHONY
1.我们想清除文件,我们在Makefile的结尾添加如下代码就可以了:
clean:
rm *.o test
*1)执行 make :生成第一个可执行文件。
*2)执行 make clean : 清除所有文件,即执行: rm *.o test。
make后面可以带上目标名,也可以不带,如果不带目标名的话它就想生成第一个规则里面的第一个目标。
2.使用Makefile
执行:make [目标] 也可以不跟目标名,若无目标默认第一个目标。我们直接执行make的时候,会在makefile里面找到第一个目标然后执行下面的指令生成第一个目标。当我们执行 make clean 的时候,就会在 Makefile 里面找到 clean 这个目标,然后执行里面的命令,这个写法有些问题,原因是我们的目录里面没有 clean 这个文件,这个规则执行的条件成立,他就会执行下面的命令来删除文件。
如果:该目录下面有名为clean文件怎么办呢?
我们在该目录下创建一个名为 “clean” 的文件,然后重新执行:make然后make
clean,结果(会有下面的提示:):
make: \`clean' is up to date.
它根本没有执行我们的删除操作,这是为什么呢?
我们之前说,一个规则能过执行的条件:
1)目标文件不存在
2)依赖文件比目标新
现在我们的目录里面有名为“clean”的文件,目标文件是有的,并且没有
依赖文件,没有办法判断依赖文件的时间。这种写法会导致:有同名的"clean"文件时,就没有办法执行make clean操作。解决办法:我们需要把目标定义为假象目标,用关键子PHONY
.PHONY: clean //把clean定义为假象目标。他就不会判断名为“clean”的文件是否存在
然后在Makfile结尾添加.PHONY: clean语句,重新执行:make clean,就会执行删除操作。
C. 变量
在makefile中有两种变量:
1), 简单变量(即使变量):
A := xxx # A的值即刻确定,在定义时即确定
对于即使变量使用 “:=” 表示,它的值在定义的时候已经被确定了
2)延时变量
B = xxx # B的值使用到时才确定
对于延时变量使用“=”表示。它只有在使用到的时候才确定,在定义/等于时并没有
确定下来。
想使用变量的时候使用“$”来引用,如果不想看到命令是,可以在命令的前面加上"@"符号,就不会显示命令本身。当我们执行make命令的时候,make这个指令本身,会把整个Makefile读进去,进行全部分析,然后解析里面的变量。常用的变量的定义如下:
:= # 即时变量
= # 延时变量
?= # 延时变量, 如果是第1次定义才起效, 如果在前面该变量已定义则忽略这句
\+= # 附加, 它是即时变量还是延时变量取决于前面的定义
?=: 如果这个变量在前面已经被定义了,这句话就会不会起效果
实例:
A := $(C)
B = $(C)
C = abc
#D = 100ask
D ?= weidongshan
all:
@echo A = $(A)
@echo B = $(B)
@echo D = $(D)
C += 123
执行:
make
结果:
A =
B = abc 123
D = weidongshan
分析:
- A := $©:
A为即使变量,在定义时即确定,由于刚开始C的值为空,所以A的值也为空。
-
B = $©:
B为延时变量,只有使用到时它的值才确定,当执行make时,会解析Makefile里面的所用变量,所以先解析C= abc,然后解析C += 123,此时,C = abc 123,当执行:@echo B = $(B) B的值为 abc 123。 -
D ?= weidongshan:
D变量在前面没有定义,所以D的值为weidongshan,如果在前面添加D = 100ask,最后D的值为100ask。
我们还可以通过命令行存入变量的值 例如:
执行:make D=123456 里面的 D ?= weidongshan 这句话就不起作用了。
结果:
A =
B = abc 123
D = 123456
Makefile函数
makefile里面可以包含很多函数,这些函数都是make本身实现的,下面我们来几个常用的函数。引用一个函数用“$”。
函数foreach
函数foreach语法如下:
$(foreach var,list,text)
前两个参数,‘var’和‘list’,将首先扩展,注意最后一个参数 ‘text’ 此时不扩展;接着,对每一个 ‘list’ 扩展产生的字,将用来为 ‘var’ 扩展后命名的变量赋值;然后 ‘text’ 引用该变量扩展;因此它每次扩展都不相同。结果是由空格隔开的 ‘text’。在 ‘list’ 中多次扩展的字组成的新的 ‘list’。‘text’ 多次扩展的字串联起来,字与字之间由空格隔开,如此就产生了函数 foreach 的返回值。
实例:
A = a b c
B = $(foreach f, &(A), $(f).o)
all:
@echo B = $(B)
结果:
B = a.o b.o c.o
函数filter/filter-out
函数filter/filter-out语法如下:
$(filter pattern...,text) # 在text中取出符合patten格式的值
$(filter-out pattern...,text) # 在text中取出不符合patten格式的值
实例:
C = a b c d/
D = $(filter %/, $(C))
E = $(filter-out %/, $(C))
all:
@echo D = $(D)
@echo E = $(E)
结果:
D = d/
E = a b c
Wildcard
函数Wildcard语法如下:
$(wildcard pattern) # pattern定义了文件名的格式, wildcard取出其中存在的文件。
这个函数 wildcard 会以 pattern 这个格式,去寻找存在的文件,返回存在文件的名字。
实例:
在该目录下创建三个文件:a.c b.c c.c
files = $(wildcard *.c)
all:
@echo files = $(files)
结果:
files = a.c b.c c.c
我们也可以用wildcard函数来判断,真实存在的文件
实例:
files2 = a.c b.c c.c d.c e.c abc
files3 = $(wildcard $(files2))
all:
@echo files3 = $(files3)
结果:
files3 = a.c b.c c.c
patsubst函数
函数 patsubst 语法如下:
$(patsubst pattern,replacement,\$(var))
patsubst 函数是从 var 变量里面取出每一个值,如果这个符合 pattern 格式,把它替换成 replacement 格式,
实例:
files2 = a.c b.c c.c d.c e.c abc
dep_files = $(patsubst %.c,%.d,$(files2))
all:
@echo dep_files = $(dep_files)
结果:
dep_files = a.d b.d c.d d.d e.d abc
Makefile实例
前面讲了那么多Makefile的知识,现在开始做一个实例。
之前编译的程序002_syntax
,有个缺陷,将其复制出来,新建一个003_example
文件夹,放在里面。
在c.c
里面,包含一个头文件c.h
,在c.h
里面定义一个宏,把这个宏打印出来。
c.c:
#include <stdio.h>
#include <c.h>
void func_c()
{
printf("This is C = %d\n", C);
}
c.h:
#define C 1
然后上传编译,执行./test
,打印出:
This is B
This is C =1
测试没有问题,然后修改c.h
:
#define C 2
重新编译,发现没有更新程序,运行,结果不变,说明现在的Makefile存在问题。
为什么会出现这个问题呢, 首先我们test依赖c.o,c.o依赖c.c,如果我们更新c.c,会重新更新整个程序。
但c.o也依赖c.h,我们更新了c.h,并没有在Makefile上体现出来,导致c.h的更新,Makefile无法检测到。
因此需要添加:
c.o : c.c c.h
现在每次修改c.h,Makefile都能识别到更新操作,从而更新最后输出文件。
这样又冒出了一个新的问题,我们怎么为每个.c文件添加.h文件呢?对于内核,有几万个文件,不可能为每个文件依次写出其头文件。
因此需要做出改进,让其自动生成头文件依赖,可以参考这篇文章:http://blog.csdn.net/qq1452008/article/details/50855810
gcc -M c.c // 打印出依赖
gcc -M -MF c.d c.c // 把依赖写入文件c.d
gcc -c -o c.o c.c -MD -MF c.d // 编译c.o, 把依赖写入文件c.d
修改Makefile如下:
objs = a.o b.o c.o
dep_files := $(patsubst %,.%.d, $(objs))
dep_files := $(wildcard $(dep_files))
test: $(objs)
gcc -o test $^
ifneq ($(dep_files),)
include $(dep_files)
endif
%.o : %.c
gcc -c -o $@ $< -MD -MF .$@.d
clean:
rm *.o test
distclean:
rm $(dep_files)
.PHONY: clean
首先用obj变量将.o文件放在一块。
利用前面讲到的函数,把obj里所有文件都变为.%.d格式,并用变量dep_files表示。
利用前面介绍的wildcard函数,判断dep_files是否存在。
然后是目标文件test依赖所有的.o文件。
如果dep_files变量不为空,就将其包含进来。
然后就是所有的.o文件都依赖.c文件,且通过-MD -MF生成.d依赖文件。
清理所有的.o文件和目标文件
清理依赖.d文件。
现在我门修改了任何.h文件,最终都会影响最后生成的文件,也没任何手工添加.h、.c、.o文件,完成了支持头文件依赖。
下面再添加CFLAGS,即编译参数。比如加上编译参数-Werror,把所有的警告当成错误。
CFLAGS = -Werror -Iinclude
…………
%.o : %.c
gcc $(CFLAGS) -c -o $@ $< -MD -MF .$@.d
现在重新make,发现以前的警告就变成了错误,必须要解决这些错误编译才能进行。在a.c
里面声明一下函数:
void func_b();
void func_c();
重新make,错误就没有了。
除了编译参数-Werror,还可以加上-I参数,指定头文件路径,-Iinclude表示当前的inclue文件夹下。
此时就可以把c.c文件里的#include ".h"
改为#include <c.h>
,前者表示当前目录,后者表示编译器指定的路径和GCC路径。
通用Makefike
Makefike
CROSS_COMPILE =
AS = $(CROSS_COMPILE)as
LD = $(CROSS_COMPILE)ld
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
AR = $(CROSS_COMPILE)ar
NM = $(CROSS_COMPILE)nm
STRIP = $(CROSS_COMPILE)strip
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
export AS LD CC CPP AR NM
export STRIP OBJCOPY OBJDUMP
CFLAGS := -Wall -O2 -g
CFLAGS += -I $(shell pwd)/include
LDFLAGS :=
export CFLAGS LDFLAGS
TOPDIR := $(shell pwd)
export TOPDIR
TARGET := test
obj-y += main.o
obj-y += sub.o
obj-y += a/
all : start_recursive_build $(TARGET)
@echo $(TARGET) has been built!
start_recursive_build:
make -C ./ -f $(TOPDIR)/Makefile.build
$(TARGET) : built-in.o
$(CC) -o $(TARGET) built-in.o $(LDFLAGS)
clean:
rm -f $(shell find -name "*.o")
rm -f $(TARGET)
distclean:
rm -f $(shell find -name "*.o")
rm -f $(shell find -name "*.d")
rm -f $(TARGET)
Makefile.build
PHONY := __build
__build:
obj-y :=
subdir-y :=
EXTRA_CFLAGS :=
include Makefile
# obj-y := a.o b.o c/ d/
# $(filter %/, $(obj-y)) : c/ d/
# __subdir-y : c d
# subdir-y : c d
__subdir-y := $(patsubst %/,%,$(filter %/, $(obj-y)))
subdir-y += $(__subdir-y)
# c/built-in.o d/built-in.o
subdir_objs := $(foreach f,$(subdir-y),$(f)/built-in.o)
# a.o b.o
cur_objs := $(filter-out %/, $(obj-y))
dep_files := $(foreach f,$(cur_objs),.$(f).d)
dep_files := $(wildcard $(dep_files))
ifneq ($(dep_files),)
include $(dep_files)
endif
PHONY += $(subdir-y)
__build : $(subdir-y) built-in.o
$(subdir-y):
make -C $@ -f $(TOPDIR)/Makefile.build
built-in.o : $(cur_objs) $(subdir_objs)
$(LD) -r -o $@ $^
dep_file = .$@.d
%.o : %.c
$(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$@) -Wp,-MD,$(dep_file) -c -o $@ $<
.PHONY : $(PHONY)
说明.txt
本程序的Makefile分为3类:
1. 顶层目录的Makefile
2. 顶层目录的Makefile.build
3. 各级子目录的Makefile
一、各级子目录的Makefile:
它最简单,形式如下:
EXTRA_CFLAGS :=
CFLAGS_file.o :=
obj-y += file.o
obj-y += subdir/
"obj-y += file.o" 表示把当前目录下的file.c编进程序里,
"obj-y += subdir/" 表示要进入subdir这个子目录下去寻找文件来编进程序里,是哪些文件由subdir目录下的Makefile决定。
"EXTRA_CFLAGS", 它给当前目录下的所有文件(不含其下的子目录)设置额外的编译选项, 可以不设置
"CFLAGS_xxx.o", 它给当前目录下的xxx.c设置它自己的编译选项, 可以不设置
注意:
1. "subdir/"中的斜杠"/"不可省略
2. 顶层Makefile中的CFLAGS在编译任意一个.c文件时都会使用
3. CFLAGS EXTRA_CFLAGS CFLAGS_xxx.o 三者组成xxx.c的编译选项
二、顶层目录的Makefile:
它除了定义obj-y来指定根目录下要编进程序去的文件、子目录外,
主要是定义工具链前缀CROSS_COMPILE,
定义编译参数CFLAGS,
定义链接参数LDFLAGS,
这些参数就是文件中用export导出的各变量。
三、顶层目录的Makefile.build:
这是最复杂的部分,它的功能就是把某个目录及它的所有子目录中、需要编进程序去的文件都编译出来,打包为built-in.o
详细的讲解请看视频。
四、怎么使用这套Makefile:
1.把顶层Makefile, Makefile.build放入程序的顶层目录
在各自子目录创建一个空白的Makefile
2.确定编译哪些源文件
修改顶层目录和各自子目录Makefile的obj-y :
obj-y += xxx.o
obj-y += yyy/
这表示要编译当前目录下的xxx.c, 要编译当前目录下的yyy子目录
3. 确定编译选项、链接选项
修改顶层目录Makefile的CFLAGS,这是编译所有.c文件时都要用的编译选项;
修改顶层目录Makefile的LDFLAGS,这是链接最后的应用程序时的链接选项;
修改各自子目录下的Makefile:
"EXTRA_CFLAGS", 它给当前目录下的所有文件(不含其下的子目录)设置额外的编译选项, 可以不设置
"CFLAGS_xxx.o", 它给当前目录下的xxx.c设置它自己的编译选项, 可以不设置
4. 使用哪个编译器?
修改顶层目录Makefile的CROSS_COMPILE, 用来指定工具链的前缀(比如arm-linux-)
5. 确定应用程序的名字:
修改顶层目录Makefile的TARGET, 这是用来指定编译出来的程序的名字
6. 执行"make"来编译,执行"make clean"来清除,执行"make distclean"来彻底清除
三、TCP
server.c
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
/* socket
* bind
* listen
* accept
* send/recv
*/
#define SERVER_PORT 8888
#define BACKLOG 10
int main(int argc, char **argv)
{
int iSocketServer;
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
struct sockaddr_in tSocketClientAddr;
int iRet;
int iAddrLen;
int iRecvLen;
unsigned char ucRecvBuf[1000];
int iClientNum = -1;
signal(SIGCHLD,SIG_IGN);
iSocketServer = socket(AF_INET, SOCK_STREAM, 0);
if (-1 == iSocketServer)
{
printf("socket error!\n");
return -1;
}
tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
memset(tSocketServerAddr.sin_zero, 0, 8);
iRet = bind(iSocketServer, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("bind error!\n");
return -1;
}
iRet = listen(iSocketServer, BACKLOG);
if (-1 == iRet)
{
printf("listen error!\n");
return -1;
}
while (1)
{
iAddrLen = sizeof(struct sockaddr);
iSocketClient = accept(iSocketServer, (struct sockaddr *)&tSocketClientAddr, &iAddrLen);
if (-1 != iSocketClient)
{
iClientNum++;
printf("Get connect from client %d : %s\n", iClientNum, inet_ntoa(tSocketClientAddr.sin_addr));
if (!fork())
{
/* 子进程的源码 */
while (1)
{
/* 接收客户端发来的数据并显示出来 */
iRecvLen = recv(iSocketClient, ucRecvBuf, 999, 0);
if (iRecvLen <= 0)
{
close(iSocketClient);
return -1;
}
else
{
ucRecvBuf[iRecvLen] = '\0';
printf("Get Msg From Client %d: %s\n", iClientNum, ucRecvBuf);
}
}
}
}
}
close(iSocketServer);
return 0;
}
client.c
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
/* socket
* connect
* send/recv
*/
#define SERVER_PORT 8888
int main(int argc, char **argv)
{
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
int iRet;
unsigned char ucSendBuf[1000];
int iSendLen;
if (argc != 2)
{
printf("Usage:\n");
printf("%s <server_ip>\n", argv[0]);
return -1;
}
iSocketClient = socket(AF_INET, SOCK_STREAM, 0);
tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
//tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
if (0 == inet_aton(argv[1], &tSocketServerAddr.sin_addr))
{
printf("invalid server_ip\n");
return -1;
}
memset(tSocketServerAddr.sin_zero, 0, 8);
iRet = connect(iSocketClient, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("connect error!\n");
return -1;
}
while (1)
{
if (fgets(ucSendBuf, 999, stdin))
{
iSendLen = send(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0);
if (iSendLen <= 0)
{
close(iSocketClient);
return -1;
}
}
}
return 0;
}
四、UDP
server.c
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
/* socket
* bind
* sendto/recvfrom
*/
#define SERVER_PORT 8888
int main(int argc, char **argv)
{
int iSocketServer;
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
struct sockaddr_in tSocketClientAddr;
int iRet;
int iAddrLen;
int iRecvLen;
unsigned char ucRecvBuf[1000];
int iClientNum = -1;
iSocketServer = socket(AF_INET, SOCK_DGRAM, 0);
if (-1 == iSocketServer)
{
printf("socket error!\n");
return -1;
}
tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
memset(tSocketServerAddr.sin_zero, 0, 8);
iRet = bind(iSocketServer, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("bind error!\n");
return -1;
}
while (1)
{
iAddrLen = sizeof(struct sockaddr);
iRecvLen = recvfrom(iSocketServer, ucRecvBuf, 999, 0, (struct sockaddr *)&tSocketClientAddr, &iAddrLen);
if (iRecvLen > 0)
{
ucRecvBuf[iRecvLen] = '\0';
printf("Get Msg From %s : %s\n", inet_ntoa(tSocketClientAddr.sin_addr), ucRecvBuf);
}
}
close(iSocketServer);
return 0;
}
client1.c
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
/* socket
* connect
* send/recv
*/
#define SERVER_PORT 8888
int main(int argc, char **argv)
{
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
int iRet;
unsigned char ucSendBuf[1000];
int iSendLen;
if (argc != 2)
{
printf("Usage:\n");
printf("%s <server_ip>\n", argv[0]);
return -1;
}
iSocketClient = socket(AF_INET, SOCK_DGRAM, 0);
tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
//tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
if (0 == inet_aton(argv[1], &tSocketServerAddr.sin_addr))
{
printf("invalid server_ip\n");
return -1;
}
memset(tSocketServerAddr.sin_zero, 0, 8);
iRet = connect(iSocketClient, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("connect error!\n");
return -1;
}
while (1)
{
if (fgets(ucSendBuf, 999, stdin))
{
iSendLen = send(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0);
if (iSendLen <= 0)
{
close(iSocketClient);
return -1;
}
}
}
return 0;
}
client2.c
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
/* socket
* connect
* send/recv
*/
#define SERVER_PORT 8888
int main(int argc, char **argv)
{
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
int iRet;
unsigned char ucSendBuf[1000];
int iSendLen;
int iAddrLen;
if (argc != 2)
{
printf("Usage:\n");
printf("%s <server_ip>\n", argv[0]);
return -1;
}
iSocketClient = socket(AF_INET, SOCK_DGRAM, 0);
tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
//tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
if (0 == inet_aton(argv[1], &tSocketServerAddr.sin_addr))
{
printf("invalid server_ip\n");
return -1;
}
memset(tSocketServerAddr.sin_zero, 0, 8);
#if 0
iRet = connect(iSocketClient, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("connect error!\n");
return -1;
}
#endif
while (1)
{
if (fgets(ucSendBuf, 999, stdin))
{
#if 0
iSendLen = send(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0);
#else
iAddrLen = sizeof(struct sockaddr);
iSendLen = sendto(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0,
(const struct sockaddr *)&tSocketServerAddr, iAddrLen);
#endif
if (iSendLen <= 0)
{
close(iSocketClient);
return -1;
}
}
}
return 0;
}
五、多线程
互斥访问
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
static char g_buf[1000];
static sem_t g_sem;
static pthread_mutex_t g_tMutex = PTHREAD_MUTEX_INITIALIZER;
static void *my_thread_func (void *data)
{
while (1)
{
//sleep(1);
/* 等待通知 */
//while (g_hasData == 0);
sem_wait(&g_sem);
/* 打印 */
pthread_mutex_lock(&g_tMutex);
printf("recv: %s\n", g_buf);
pthread_mutex_unlock(&g_tMutex);
}
return NULL;
}
int main(int argc, char **argv)
{
pthread_t tid;
int ret;
char buf[1000];
sem_init(&g_sem, 0, 0);
/* 1. 创建"接收线程" */
ret = pthread_create(&tid, NULL, my_thread_func, NULL);
if (ret)
{
printf("pthread_create err!\n");
return -1;
}
/* 2. 主线程读取标准输入, 发给"接收线程" */
while (1)
{
fgets(buf, 1000, stdin);
pthread_mutex_lock(&g_tMutex);
memcpy(g_buf, buf, 1000);
pthread_mutex_unlock(&g_tMutex);
/* 通知接收线程 */
sem_post(&g_sem);
}
return 0;
}
同步操作(互斥+条件变量)
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
static char g_buf[1000];
static pthread_mutex_t g_tMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t g_tConVar = PTHREAD_COND_INITIALIZER;
static void *my_thread_func (void *data)
{
while (1)
{
//sleep(1);
/* 等待通知 */
//while (g_hasData == 0);
pthread_mutex_lock(&g_tMutex);
pthread_cond_wait(&g_tConVar, &g_tMutex);
/* 打印 */
printf("recv: %s\n", g_buf);
pthread_mutex_unlock(&g_tMutex);
}
return NULL;
}
int main(int argc, char **argv)
{
pthread_t tid;
int ret;
char buf[1000];
/* 1. 创建"接收线程" */
ret = pthread_create(&tid, NULL, my_thread_func, NULL);
if (ret)
{
printf("pthread_create err!\n");
return -1;
}
/* 2. 主线程读取标准输入, 发给"接收线程" */
while (1)
{
fgets(buf, 1000, stdin);
pthread_mutex_lock(&g_tMutex);
memcpy(g_buf, buf, 1000);
pthread_cond_signal(&g_tConVar); /* 通知接收线程 */
pthread_mutex_unlock(&g_tMutex);
}
return 0;
}