计算机竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

news2025/1/21 7:18:04

文章目录

  • 0 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):
    string = re.sub(r"[^\u4e00-\u9fff]", " ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip()

def get_data_in_a_file(original_path, save_path='all_email.txt'):
    files = os.listdir(original_path)
    for file in files:
        if os.path.isdir(original_path + '/' + file):
                get_data_in_a_file(original_path + '/' + file, save_path=save_path)
        else:
            email = ''
            # 注意要用 'ignore',不然会报错
            f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')
            # lines = f.readlines()
            for line in f:
                line = clean_str(line)
                email += line
            f.close()
            """
            发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多
            """
            f = open(save_path, 'a', encoding='utf8')
            email = [word for word in jieba.cut(email) if word.strip() != '']
            f.write(' '.join(email) + '\n')

print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):
    f = open(original_path, 'r')
    label_list = []
    for line in f:
        # spam
        if line[0] == 's':
            label_list.append('0')
        # ham
        elif line[0] == 'h':
            label_list.append('1')

    f = open(save_path, 'w', encoding='utf8')
    f.write('\n'.join(label_list))
    f.close()

print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

def tokenizer_jieba(line):
    # 结巴分词
    return [li for li in jieba.cut(line) if li.strip() != '']

def tokenizer_space(line):
    # 按空格分词
    return [li for li in line.split() if li.strip() != '']

def get_data_tf_idf(email_file_name):
    # 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_space
    vectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')
    content = open(email_file_name, 'r', encoding='utf8').readlines()
    x = vectoring.fit_transform(content)
    return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np

if __name__ == "__main__":
    np.random.seed(1)
    email_file_name = 'all_email.txt'
    label_file_name = 'label.txt'
    x, vectoring = get_data_tf_idf(email_file_name)
    y = get_label_list(label_file_name)

    # print('x.shape : ', x.shape)
    # print('y.shape : ', y.shape)
    
    # 随机打乱所有样本
    index = np.arange(len(y))  
    np.random.shuffle(index)
    x = x[index]
    y = y[index]

    # 划分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    clf = svm.LinearSVC()
    # clf = LogisticRegression()
    # clf = ensemble.RandomForestClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))
    print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。



    def get_embedding_vectors(tokenizer, dim=100):
    embedding_index = {}
    with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
    values = line.split()
    word = values[0]
    vectors = np.asarray(values[1:], dtype='float32')
    embedding_index[word] = vectors
    
    word_index = tokenizer.word_index
    embedding_matrix = np.zeros((len(word_index)+1, dim))
    for word, i in word_index.items():
    embedding_vector = embedding_index.get(word)
    if embedding_vector is not None:
    # words not found will be 0s
    embedding_matrix[i] = embedding_vector
    
    return embedding_matrix


    def get_model(tokenizer, lstm_units):
    """
    Constructs the model,
    Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation
    """
    # get the GloVe embedding vectors
    embedding_matrix = get_embedding_vectors(tokenizer)
    model = Sequential()
    model.add(Embedding(len(tokenizer.word_index)+1,
    EMBEDDING_SIZE,
    weights=[embedding_matrix],
    trainable=False,
    input_length=SEQUENCE_LENGTH))
    
    model.add(LSTM(lstm_units, recurrent_dropout=0.2))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation="softmax"))
    # compile as rmsprop optimizer
    # aswell as with recall metric
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])
    model.summary()
    return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758

Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/906598.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker 03(docker 容器的数据卷)

一、数据卷的概念和作用 删除后,数据也没了。 不能 数据卷 是宿主机中的一个目录或文件当容器目录和数据卷目录绑定后,对方的修改会立即同步一个数据卷可以被多个容器同时挂载 作用: 容器数据持久化 外部机器和容器间接通信 容器之间数据交换…

数据结构(2)

冒泡排序: 1.比较相邻的两个元素。如果前一个元素比后一个元素大,则交换两者位置。 2.对每一对相邻元素做相同工作,从第一对元素到最后一对元素,最后的一个元素就是最大的元素。 for(int ia.length-1;i>0;i--){for (int j 0…

Canvas绘制毛玻璃背景分享海报

最近重新设计了分享海报,用毛玻璃作为背景,使整体更有质感,如果没有用到canvas,毛玻璃效果其实很好实现,给元素添加一个滤镜即可(比如:filter: blur(32px)),但是实践的过…

HTTPS代理搭建技巧分享

今天我们来分享一下如何搭建一个能够实现中间人 检测和防护的HTTPS代理。保护我们的网络通信安全是至关重要的,让我们一起学习如何构建一个安全可靠的HTTPS代理吧! 什么是中间人 ? 首先,让我们来了解一下什么是中间人 。中间人 是…

html表格中加入斜线,使用css给table表格表头单元格添加斜线

背景:业务给了90张word电子表格,需要用html设计出来。 如图所示,红色区域的下斜线如何实现? 先说结论:html中table没有直接的斜线表头标签,但结合css、svg之类的可以实现。 #lineTd{ background:#FFFFFF u…

Leetcode67 二进制求和

给你两个二进制字符串 a 和 b ,以二进制字符串的形式返回它们的和。 代码 class Solution {public String addBinary(String a, String b) {StringBuilder res new StringBuilder();int carry 0;int i a.length() - 1, j b.length() - 1;while(i > 0 || j &…

『吴秋霖赠书活动 | 第一期』《强化学习:原理与Python实战》

文章目录 一、什么是RLHF?二、RLHF适用于哪些任务?三、RLHF和其他构建奖励模型的方法相比有何优劣?四、什么样的人类反馈才是好的反馈五、RLHF算法有哪些类别,各有什么优缺点?七、如何降低人类反馈带来的负面影响&…

2021电赛国一智能送药小车(F题)设计报告

2021电赛国一智能送药小车(F题)设计报告 【写在前面的话】 电赛是一个很奇妙的过程,可能有些人觉得电赛的门槛太高,那便意味着,当你决定要参加电赛的那一刻起,这一段路、这些日子就注定不会太轻松&#xf…

WPS中的表格错乱少行

用Office word编辑的文档里面包含表格是正常的,但用WPS打开里面的表格就是错乱的,比如表格位置不对,或者是表格的前几行无法显示、丢失了。 有一种可能的原因是: 表格属性里面的文字环绕选成了“环绕”而非“无”,改…

周易卦爻解读笔记——既济

第六十三卦既济 水火既济 坎上离下 既济卦由泰卦所变,泰卦六五与九二换位,象征已经完成。 地天泰 序卦传【有过物者必济,故受之以既济】 既,已经。《谷梁传》云:“既者,尽也。有继之辞也。”济者&#…

DNDC模型建模方法及在土壤碳储量、温室气体排放、农田减排、土地变化、气候变化中的应用

第一讲 DNDC模型介绍 ①碳循环模型简介 ②DNDC模型原理 ③DNDC下载与安装 ④DNDC注意事项 第二讲 DNDC初步操作 ①DNDC界面介绍 ②DNDC数据及格式 ③DNDC点尺度模拟 ④DNDC区域尺度模拟 ⑤DNDC结果查看 第三讲 遥感和GIS基础 ①DNDC中的遥感和GIS技术 ②ArcGIS软件界面 ③坐…

【开发笔记】ubuntu部署指定版本的前后端运行环境(npm nodejs mysql)

目录 1 背景2 环境要求3 部署流程3.1 npm的安装3.2 nodejs的安装3.3 MySQL的安装 4 可能的问题 1 背景 在远程服务器上的Ubuntu系统中,部署指定版本的前后端项目的运行环境 2 环境要求 npm 9.5.1Nodejs v18.16.1MySQL 8.0.33 3 部署流程 3.1 npm的安装 通过安…

docker导出、导入镜像、提交

导出镜像到本地,然后可以通过压缩包的方式传输。 导出:docker image save 镜像名:版本号 > /home/quxiao/javatest.tgz 导入:docker image load -i /home/quxiao/javatest.tgz 删除镜像就得先删除容器,当你每运行一次镜像&…

【三】关系模型 -- 基本概念

基本概念关系模型概述关系模型的提出关系模型研究什么关系模型的三要素 什么是关系概念引入1. 域2. 笛卡尔积3. 关系 关系模式 VS 关系关系的特性1. 列是同质2. R(A:D) 中,A 不可相同,D 可相同3. 行、列位置互换性4. 属性不可再分(关系第一范…

用yolov4-tiny检测在电力输电线20种鸟类,灵活运用训练trick,实验较为完备,数据处理丰富度值得参考

Detection of bird species related to transmission line faults based on lightweight convolutional neural network Abstract 输电线路高效防鸟害是电网运行维护面临的长期挑战。本文提出了一种将轻量级卷积神经网络(CNN)、图像处理和目标检测相结合的方法来检测与输电线路…

基于GPT-4和LangChain构建云端定制化PDF知识库AI聊天机器人

参考: GitHub - mayooear/gpt4-pdf-chatbot-langchain: GPT4 & LangChain Chatbot for large PDF docs 1.摘要: 使用新的GPT-4 api为多个大型PDF文件构建chatGPT聊天机器人。 使用的技术栈包括LangChain, Pinecone, Typescript, Openai和Next.js…

Day12-2-面向对象编程

Day12-面向对象编程 一 回顾 变量,数组,对象都是容器,都可以用来存储数据 let n = 10 let arr = [3,5,7] let stu = {name:"张恒",age:18,sex:"女"}二 面向对象思想 面向过程:将开发的步骤按照顺序一步一步往下执行,直到程序结束 面向对象:将项目中…

第2步---MySQL卸载和图形化工具展示

第2步---MySQL卸载和图形化工具展示 1.MySQL的卸载 2.MySQL的图形化工具 2.1常见的图形化工具 SQLyog:简单。SQLyog首页、文档和下载 - MySQL 客户端工具 - OSCHINA - 中文开源技术交流社区 Mysql Workbench :MySQL :: MySQL Workbench DataGrip&…

百度吴甜重磅发布文心一言面向开发者的三大举措,激活生态创新

近日,第九届WAVE SUMMIT深度学习开发者大会在京举办。百度集团副总裁、深度学习技术及应用国家工程研究中心副主任吴甜分享了百度自研大语言模型“文心一言”的最新进展,重磅发布5个原生插件,面向开发者正式推出AI Studio星河大模型社区、插件…

如何限制PDF打印?限制清晰度?

想要限制PDF文件的打印功能,想要限制PDF文件打印清晰度,都可以通过设置限制编辑来达到目的。 打开PDF编辑器,找到设置限制编辑的界面,切换到加密状态,然后我们就看到 有印刷许可。勾选【权限密码】输入一个PDF密码&am…