时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测

news2024/11/18 12:21:00

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式1:私信博主回复SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

学习总结

该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/905824.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入解析淘宝API,实现高效商务应用

淘宝API的基本调用 1. API文档与SDK 淘宝API官方提供了详细的API文档&#xff0c;包含了API的使用说明、参数列表、示例代码等内容。开发者可以通过文档了解每个API接口的具体功能和使用方法。此外&#xff0c;淘宝API还提供了多种编程语言的SDK&#xff0c;方便开发者进行快速…

桌游新篇:3.1 UserCase分析

距离上一次停止更新这个系列有将近9个月了。 工作这么久&#xff0c;学会了一件事&#xff0c;就是想清楚再动手。当然&#xff0c;后续工作已经渐渐展开了&#xff0c;而且当下属于天时地利人和&#xff08;既有当前MR设备带来的硬件buff&#xff0c;又有大语言模型&#xff…

SOPC之NIOS Ⅱ实现电机转速PID控制

通过FPGA开发板上的NIOS Ⅱ搭建电机控制的硬件平台&#xff0c;包括电机正反转、编码器的读取&#xff0c;再通过软件部分实现PID算法对电机速度进行控制&#xff0c;使其能够渐近设定的编码器目标值。 一、PID算法 PID算法&#xff08;Proportional-Integral-Derivative Algo…

21-注意点说明:scoped样式冲突 / data

组件的三大组成部分 - 注意点说明 组件的样式冲突 scoped 默认情况:写在组件中的样式会 全局生效 -> 因此很容易造成多个组件之间的样式冲突问题 1.全局样式: 默认组件中的样式会作用到全局 2.局部样式: 可以给组件加上 scoped 属性,可以让样式只作用于当前组件 scoped原理…

《有效调节情绪,保持工作心态平和》

工作中&#xff0c;我们有时会遇到各种挑战和困难&#xff0c;这些挑战和困难可能引发我们的负面情绪&#xff0c;例如焦虑、愤怒和沮丧等。然而&#xff0c;保持稳定的情绪是实现高效工作的重要因素之一。本文将分享如何在工作中保持稳定的情绪。 首先&#xff0c;让我们来谈谈…

Spring Boot 如何通过jdbc+HikariDataSource 完成对Mysql 操作

&#x1f600;前言 本篇博文是关于Spring Boot 如何通过jdbcHikariDataSource 完成对Mysql 操作的说明&#xff0c;希望你能够喜欢&#x1f60a; &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的…

Python多组数据三维绘图系统

文章目录 增添和删除坐标数据更改绘图逻辑源代码 Python绘图系统&#xff1a; 基础&#xff1a;将matplotlib嵌入到tkinter &#x1f4c8;简单的绘图系统 &#x1f4c8;数据导入&#x1f4c8;三维绘图系统自定义控件&#xff1a;坐标设置控件&#x1f4c9;坐标列表控件 增添和…

录屏有哪些讲究?有哪些好用的录屏软件?

在如今数字时代&#xff0c;视频分享已经成为一种流行的传播方式。为了制作高质量的视频内容&#xff0c;录屏已经成为了一种必备的技能。但是&#xff0c;要想制作出令人满意的录屏视频&#xff0c;需要了解一些讲究和使用一些好用的录屏软件。 录屏是一种视觉传达方式&#x…

【prism】发布订阅和取消订阅,进一步梳理

一个对象对应一个事件订阅 一个事件是可以被重复订阅的,如果一个事件被订阅了三次,那边发布一次该事件,就会触发三次事件订阅: 通过观察Prism的事件聚合器对象,发现它此时包含了三个事件对象,其中第三个事件订阅数量达到了3! 这样的话,如果调用一次 Publish ,那么S…

Android 获取 SHA256 签名

在 Android Studio 中的 Terminal &#xff0c;输入命令: keytool -list -v -keystore debug.keystore 如果出现以下提示&#xff1a; keytool -genkey -v -keystore debug.keystore -alias androiddebugkey -keyalg RSA -validity 10000 按照提示输入相关信息&#xff0c;…

SIP 7英寸触摸屏寻呼主机

SV-8006TP SIP7英寸触摸屏寻呼主机 一、描述 SV-8006TP是我司的一款SIP桌面式对讲广播主机&#xff0c;具有10/100M以太网接口&#xff0c;从网络接口接收网络的音频数据&#xff0c;提供立体声音频输出。 SV-8006TP寻呼话筒可以通过麦克风或者本地线路输入对终端进行分区广…

Java【手撕双指针】LeetCode 283. “移动零“, 图文详解思路分析 + 代码

文章目录 前言一、移动零1, 题目2, 思路分析3, 代码展示 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等 &#x1f4d7; Java数据结构: 顺序表, 链表,…

传统图像处理之直方图均衡化

重要说明&#xff1a;本文从网上资料整理而来&#xff0c;仅记录博主学习相关知识点的过程&#xff0c;侵删。 一、参考资料 直方图均衡化的原理及实现 图像处理之直方图均衡化 二、直方图 1. 直方图的概念 图像的灰度直方图&#xff0c;描述了图像中灰度分布情况&#xf…

BaiChuan13B多轮对话微调范例

前方干货预警&#xff1a;这可能是你能够找到的&#xff0c;最容易理解&#xff0c;最容易跑通的&#xff0c;适用于多轮对话数据集的大模型高效微调范例。 我们构造了一个修改大模型自我认知的3轮对话的玩具数据集&#xff0c;使用QLoRA算法&#xff0c;只需要5分钟的训练时间…

antd5源码调试环境启动(MacOS)

将源码下载至本地 这里antd5 版本是5.8.3 $ git clone gitgithub.com:ant-design/ant-design.git $ cd ant-design $ npm install $ npm start前提&#xff1a;安装python3、node版本18.14.0(这是本人当前下载的版本&#xff09; python3安装教程可参考&#xff1a;https://…

达梦数据库读写分离集群原理

概述 本文就达梦数据库读写分离原理进行介绍。 达梦读写分离集群特点&#xff1a; 可以配置8个即时备库或8个实时备库&#xff1b;读写操作自动分离、负载均衡&#xff1b;提供数据同步&#xff1b;备库故障自动处理&#xff0c;故障恢复自动数据同步等功能&#xff0c;也支持…

基于”Python+”多技术融合在蒸散发与植被总初级生产力估算中的应用

熟悉蒸散发ET及其组分&#xff08;植被蒸腾Ec、土壤蒸发Es、冠层截留Ei&#xff09;、植被总初级生产力GPP的概念和碳水耦合的基本原理&#xff1b;掌握利用Python与ArcGIS工具进行课程相关的操作&#xff1b;熟练掌握国际上流行的Penman-Monteith模型&#xff0c;并能够应用该…

K8s学习笔记1

一、课程介绍&#xff1a; 1、背景&#xff1a; 1&#xff09;从基础设备主机化向容器化转换。 2&#xff09;从人肉式运维工作模式向自动化运维模式转换。 3&#xff09;从自动化运维体系向全体系智能化运维模式转换。 2、课程目标人群: 1&#xff09;掌握Linux操作系统基…

适合国内用户的五款ChatGPT插件

众所周知使用ChatGPT3.5需要使用魔法且不稳定&#xff0c;订阅ChatGPT4.0每月需要支付20美元&#xff0c;并且使用次数有限制。对于那些不想每年花费240美元&#xff08;超过1500元人民币&#xff09;来使用GPT4.0的朋友们来说&#xff0c;还有别的办法吗&#xff1f; 答案是&…

手机debug模式无法连接AndroidStudio,或者Android项目运行失败

在开发中&#xff0c;经常会遇到手机开发模式无法连接AndroidStudio;或者连接后运行失败的问题&#xff0c;请关闭以下设置。