第 7 章 排序算法(1)(介绍,分类,时间复杂度,空间复杂度)

news2024/11/15 12:59:54

7.1排序算法的介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程

7.2排序的分类:

  1. 内部排序:
    指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。
  3. 常见的排序算法分类(见右图):
    在这里插入图片描述

7.3算法的时间复杂度

7.3.1度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  2. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优.

7.3.2时间频度

基本介绍

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。[举例说明]

举例说明-基本案例

比如计算1-100所有数字之和, 我们设计两种算法:
在这里插入图片描述
在这里插入图片描述

举例说明-忽略常数项

在这里插入图片描述
在这里插入图片描述
结论:
2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略

举例说明-忽略低次项

在这里插入图片描述
在这里插入图片描述
结论:
2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20

举例说明-忽略系数

在这里插入图片描述
在这里插入图片描述
结论:
随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

7.3.3时间复杂度

  1. 一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

  2. T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)

  3. 计算时间复杂度的方法:

  • 用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
  • 修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
  • 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

7.3.4常见的时间复杂度

  1. 常数阶O(1)
  2. 对数阶O(log2n)
  3. 线性阶O(n)
  4. 线性对数阶O(nlog2n)
  5. 平方阶O(n^2)
  6. 立方阶O(n^3)
  7. k次方阶O(n^k)
  8. 指数阶O(2^n)

常见的时间复杂度对应的图:
在这里插入图片描述

说明:

  1. 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法

1) 常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
在这里插入图片描述

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2) 对数阶O(log2n)

在这里插入图片描述
说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .

在这里插入图片描述

3) 线性阶O(n)

在这里插入图片描述
说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

4) 线性对数阶O(nlogN)

在这里插入图片描述
说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

5) 平方阶O(n²)

在这里插入图片描述
说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)

6) 立方阶O(n³)、K次方阶O(n^k)

说明:参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似

7.3.5平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
    在这里插入图片描述

7.4算法的空间复杂度简介

7.4.1基本介绍

  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法,基数排序就属于这种情况
  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/902036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Unity每日一记】SceneManager场景资源动态加载

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:uni…

Java程序设计——编写国际象棋棋盘(5*6的黑白方格)

重点代码: 调整黑白方格 if(i%20) { if(k%20) j[i].setBackground(color[0]); else j[i].setBackground(color[1]); add(j[i]); } else …

spring boot分装通用的查询+分页接口

背景 在用spring bootmybatis plus实现增删改查的时候,总是免不了各种模糊查询和分页的查询。每个数据表设计一个模糊分页,这样代码就造成了冗余,且对自身的技能提升没有帮助。那么有没有办法实现一个通用的增删改查的方法呢?今天…

分享8个新鲜的 VSCode 插件,提高你的开发生产效率

Visual Studio Code通常被称为VSCode,是一款开源、轻量但功能强大的源代码编辑器。被全球开发者广泛使用,它提供了丰富的扩展生态系统,适用于各种类型的开发者,增强了用户在多种语言中编码、高效调试甚至在编码过程中引入一些乐趣…

【C语言】字符分类函数、字符转换函数、内存函数

前言 之前我们用两篇文章介绍了strlen、strcpy、stract、strcmp、strncpy、strncat、strncmp、strstr、strtok、streeror这些函数 第一篇文章strlen、strcpy、stract 第二篇文章strcmp、strncpy、strncat、strncmp 第三篇文章strstr、strtok、streeror 今天我们就来学习字…

【GeoDa实用技巧100例】019:制作统计地图(气泡地图)

严重声明:本文为CSDN博主刘一哥GIS原创,原文地址为:https://blog.csdn.net/lucky51222/article/details/132379144,拒绝转载。 文章目录 一、统计地图介绍二、统计地图制作1. 加载实验数据2. 制作统计地图三、重新定义统计地图一、统计地图介绍 统计地图是显示地图中极端值…

C++ Qt 待机弹球游戏

以前的电视机待机时,都有一个球在界面弹来弹去,碰到边界则改变颜色和方向。 设计算法实现该效果,qt实现界面,C实现运动轨迹,及颜色变化。 详细注释 效果如图 运动轨迹控制类头文件 #ifndef CMOTIONCONTROL_H #defi…

系统架构设计师之网络安全-各个层次的网络安全保障

系统架构设计师之网络安全-各个层次的网络安全保障

java面试基础 -- ArrayList 和 LinkedList有什么区别, ArrayList和Vector呢?

目录 基本介绍 有什么不同?? ArrayList的扩容机制 ArrayLIst的基本使用 ArrayList和Vector 基本介绍 还记得我们的java集合框架吗, 我们来复习一下, 如图: 可以看出来 ArrayList和LinkedList 都是具体类, 他们都是接口List的实现类. 但是他们底层的逻辑是不同的, 相信…

什么是条件get方法?

条件GET方法通常指的是HTTP协议中的"GET"请求,但它带有一些条件,这些条件用于控制服务器是否应该返回请求的资源。这些条件通常使用HTTP标头字段来指定,以便客户端可以告诉服务器在某些条件下是否需要新的或更新的资源。 条件GET方…

操作符详解下(非常详细)

这里写目录标题 下标访问[ ]、函数调用()[ ]下标引用操作符函数调用操作符 操作符的属性:优先级、结合性优先级结合性 表达式求值整型提升整型提升的意义如何进行整体提升 算术转换问题表达式解析表达式1表达式2表达式3表达式4表达式5 总结 下标访问[ ]、函数调用()…

第3天----在一行句子中寻找最长最短单词

今天我们将学习如何在一行句子中寻找(第一次出现的)最长最短单词。本节内容会或多或少地利用到第一讲/第二讲的知识点,需要的同学可以先去看看前面的内容。 一、小试牛刀: 题目描述 输入 1 行句子(不多于 200 个单词,每个单词长度…

股票交易这个游戏玩法的本质

养家老师的“买在分歧,卖在一致”不用过度解读了,这句话也会是一个人入门标志,那就是这个市场是博弈的市场,预期打满没有任何分歧的话,那就没有继续博弈的价值了,也就只有最后一批接盘的人,而分…

Java程序设计——编写一个登录页面

需要编写两个类 LonginFrame、MainFrame LonginFrame类 import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class LoginFrame extends JFrame {JLabel lbluserLogIn;JL…

GitLab与GitLab Runner安装(RPM与Docker方式),CI/CD初体验

背景 GitLab 是一个强大的版本控制系统和协作平台,记录一下在实际工作中关于 GitLab 的安装使用记录。 一开始使用 GitLab 时,是在 CentOS7 上直接以 rpm 包的方式进行安装,仅作为代码托管工具来使用,版本: 14.10.4 …

OpenCV基础知识(6)— 滤波器

前言:Hello大家好,我是小哥谈。在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,被叫做图像的平滑处理(或者叫图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节…

对容器、虚拟机和 Docker 的初学者友好介绍

一、说明 如果你是一个程序员或技术人员,你可能至少听说过Docker:一个有用的工具,用于在“容器”中打包,运输和运行应用程序。很难不这样做,这些天它得到了所有的关注 - 来自开发人员和系统管理员。即使是像谷歌、VMwa…

idea gerrit 插件使用指引

IDEA安装gerrit插件 在线安装(推荐) 直接搜索gerrit,安装即可离线安装 可以到github下载离线包:https://github.com/uwolfer/gerrit-intellij-plugin/releases,不过可能会有版本不兼容问题,还是推荐在线安装…

完美版积分商城系统-奇偶商城系统源码+独立代理后台

奇偶商城系统源码 完美版独立代理后台 1.演示环境:Linux Centos7以上版本 宝塔 2.Nginx 1.18.0 PHP7.0 Mysql5.6 3.伪静态选择thinkphp 4./Application/Common/Conf 修改数据库信息 详细搭建教程附在压缩包内了,下载查看

信号量

信号量(semaphore)和信号只有一字之差,却是不同的概念,信号量与之前介绍的IPC不同,它是一个计数器,用于实现进程间的互斥于同步 本文参考: Linux 的信号量_linux 信号量_行孤、的博客-CSDN博客 …