回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

news2024/12/30 3:20:30

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/899759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

运动恢复结构(SfM)_OpenMVG_代码的核心逻辑

参考: 深蓝学院,基于图像的三维重建 课程 1. 输入输出 数据集 fountain,选⾃Lund University开源的三维重建数据集 (http://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html ) 2. 特征提取与特征匹配

优于立方复杂度的 Rust 中矩阵乘法

优于立方复杂度的 Rust 中矩阵乘法 迈克克维特 跟随 发表于 更好的编程 6 分钟阅读 7月 <> 143 中途&#xff1a;三次矩阵乘法 一、说明 几年前&#xff0c;我在 C 年编写了 Strassen 矩阵乘法算法的实现&#xff0c;最近在 Rust 中重新实现了它&#xff0c;因为我继续…

TCP报文段的首部格式

TCP传送的数据单元称为报文段&#xff0c;既可以用来运载数据&#xff0c;又可以用来建立连接、释放连接和应答 一个TCP报文段可以分为首部和数据部分&#xff0c;整个TCP报文段作为IP数据报的数据部分封装在IP数据报中。首部的固定长度为20B&#xff0c;因此最短为20B&#xf…

17-工程化开发 脚手架 Vue CLI

开发Vue的两种方式: 1.核心包传统开发模式: 基于 html/css /js 文件&#xff0c;直接引入核心包&#xff0c;开发 Vue。 2.工程化开发模式: 基于构建工具 (例如: webpack)的环境中开发 Vue。 问题: 1. webpack 配置不简单 2. 雷同的基础配置 3. 缺乏统…

2023.8 - java - 对象和类

public class Dog {String breed;int size;String colour;int age;void eat() {}void run() {}void sleep(){}void name(){} } 一个类可以包含以下类型变量&#xff1a; 局部变量&#xff1a;在方法、构造方法或者语句块中定义的变量被称为局部变量。变量声明和初始化都是在方…

01-关于new Object()的问题

美团面试题关于Object o = new Object()的几个问题。 1、对象在内存中的存储布局? 实例化一个对象,在堆区开辟一段空间。 堆区由markword、类型指针(class point)、实例数据、对齐组成。 markword:由8个字节组成。 类型指针(class point):就是指向某class文件的指针,…

外网连接局域网的几种方式?快解析内网穿透安全便利吗?

外网连接局域网是一项网络连接中的关键技术&#xff0c;它能够让远程用户通过互联网访问内部局域网中的资源和服务。外网连接局域网为企业提供了更大的灵活性和便捷性&#xff0c;但也需要严格的安全措施来防止未经授权的访问。 外网连接局域网的几种方式 在将外网连接到局域…

数组详解

1. 一维数组的创建和初始化 1.1 数组的创建 数组是一组相同类型元素的集合。 数组的创建方式&#xff1a; type_t arr_name [const_n]; //type_t 是指数组的元素类型 //const_n 是一个常量表达式&#xff0c;用来指定数组的大小 数组创建的实例&#xff1a; //代码1 int a…

SpringMVC之入门搭建框架

文章目录 前言一、SpringMVC简介1.什么是MVC2.什么是SpringMVC3.SpringMVC的特点 二、搭建框架——HelloWorld1.创建maven工程&#xff08;web项目&#xff09;2.配置web.xml3.配置springMVC.xml4.创建请求控制器 总结 前言 基础小白第一次走进SpringMVC&#xff1a;了解什么是…

@mouseover不起作用,并没有触发

我的错误代码如下&#xff1a; <el-rowv-for"version in item.version_list":key"version.id":class"{ blue-background: versionItem.id version.id }"mouseover.native"version.isHovered true"mouseleave.native"version…

C++11并发与多线程笔记(11) std::atomic续谈、std::async深入谈

C11并发与多线程笔记&#xff08;11&#xff09; std::atomic续谈、std::async深入谈 1、std::atomic续谈2、std::async深入理解2.1 std::async参数详述2.2 std::async和std::thread()区别&#xff1a;2.3 async不确定性问题的解决 1、std::atomic续谈 #include <iostream&…

核能的发展与应用

目录 1.核能的概念 2.核能的实现原理 3.核能的利与弊 4.核能未来的发展趋势 1.核能的概念 核能是指利用核反应过程中释放出的能量来产生电力或其他形式能量的能源形式。核能主要通过核裂变和核聚变两种方式产生。 1. 核裂变&#xff1a;核裂变是指重核&#xff08;通常是铀、…

智能电视与win10电脑后续无法实现DLNA屏幕共享

问题背景&#xff1a; 我用的是TCL电视&#xff0c;但是并不是最新&#xff0c;打开的方式是U盘->电脑&#xff0c;各位看自己情况&#xff0c;很多问题都大概率是智能电视问题。 情景假设&#xff1a; 假设你已经完成原先智能电视该有的步骤&#xff0c;通过DLNA&#xf…

什么是springMVC 视图和视图解析器

&#x1f600;前言 本篇讲解了什么是springMVC 视图和视图解析器 &#x1f3e0;个人主页&#xff1a;尘觉主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的满意是我的动力&#x1f609;&#x1f60…

【C# 基础精讲】LINQ to XML查询

LINQ to XML 是 C# 中用于查询和操作 XML 数据的强大工具。它允许您使用 LINQ 查询语法对 XML 文档进行查询、过滤、投影等操作&#xff0c;从而更加方便地处理 XML 数据。本文将详细介绍 LINQ to XML 的基本概念、常见操作以及示例&#xff0c;帮助您了解如何在 C# 中使用 LIN…

内核编译bpf

1 cp /boot/config-4.15.0-213-generic . 2 make menuconfig 报错缺少库 2.1 安装flex库 https://github.com/westes/flex/releases/download/v2.6.4/flex-2.6.4.tar.gz ./configure CFLAGS-D_GNU_SOURCE make sudo make install 再次编译 缺少 bison库 2.2 下载 …

图片合成动图怎么弄?gif图制作的简单方法

许多鬼畜的表情包其实是用图片合成gif完成的&#xff0c;那么怎么将图片转gif呢&#xff1f;使用GIF中文网的gif合成&#xff08;https://www.gif.cn&#xff09;功能&#xff0c;打开浏览器就可以完成gif图片制作&#xff0c;非常简单方便&#xff0c;一起来了解一下吧。 打开…

C++笔记之Class A a = b调用的什么构造函数(引例)

C笔记之Class A a b调用的什么构造函数(引例) code review! 文章目录 C笔记之Class A a b调用的什么构造函数(引例)1.C笔记之Class A a b调用的什么构造函数&#xff1f;2.常见的三种形式3.等价的两种形式 1.C笔记之Class A a b调用的什么构造函数&#xff1f; 2.常见的三…

Vue 项目搭建

环境配置 1. 安装node.js 官网&#xff1a;nodejs&#xff08;推荐 v10 以上&#xff09; 官网&#xff1a;npm 是什么&#xff1f; 由于vue的安装与创建依赖node.js&#xff08;JavaScript的运行环境&#xff09;里的npm&#xff08;包管理和分发工具&#xff09;&#xff…

【80天学习完《深入理解计算机系统》】第八天 3.1 机器级代码【汇编指令】【寄存器】【操作数】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&#xff09;   文章字体风格&#xff1a; 红色文字表示&#…