无涯教程-TensorFlow - 单词嵌入

news2024/9/17 18:59:10

Word embedding是从离散对象(如单词)映射到向量和实数的概念,可将离散的输入对象有效地转换为有用的向量。

Word embedding的输入如下所示:

blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259)
blues: (0.01396, 0.11887, -0.48963, ..., 0.033483, -0.10007, 0.1158)
orange: (-0.24776, -0.12359, 0.20986, ..., 0.079717, 0.23865, -0.014213)
oranges: (-0.35609, 0.21854, 0.080944, ..., -0.35413, 0.38511, -0.070976)

Word2vec

Word2vec是用于无监督最常见方法,它以一种方式训练模型,即给定的输入单词通过使用跳跃语法来预测单词的上下文。

TensorFlow提供了多种方法来实现这种模型,从而提高了复杂性和优化级别,并使用了多线程概念和更高级别的抽象。

import os 
import math 
import numpy as np 
import tensorflow as tf 

from tensorflow.contrib.tensorboard.plugins import projector 
batch_size = 64 
embedding_dimension = 5 
negative_samples = 8 
LOG_DIR = "logs/word2vec_intro" 

digit_to_word_map = {
   1: "One", 
   2: "Two", 
   3: "Three", 
   4: "Four", 
   5: "Five", 
   6: "Six", 
   7: "Seven", 
   8: "Eight", 
   9: "Nine"} 
sentences = [] 

# 创建两种句子 - 奇数和偶数序列。
   for i in range(10000): 
   rand_odd_ints = np.random.choice(range(1, 10, 2), 3) 
      sentences.append(" ".join([digit_to_word_map[r] for r in rand_odd_ints])) 
   rand_even_ints = np.random.choice(range(2, 10, 2), 3) 
      sentences.append(" ".join([digit_to_word_map[r] for r in rand_even_ints])) 
   
# 将单词映射到索引
word2index_map = {} 
index = 0 

for sent in sentences: 
   for word in sent.lower().split(): 
   
   if word not in word2index_map: 
      word2index_map[word] = index 
      index += 1 
index2word_map = {index: word for word, index in word2index_map.items()} 

vocabulary_size = len(index2word_map) 

# 生成skip-gram对
skip_gram_pairs = [] 

for sent in sentences: 
   tokenized_sent = sent.lower().split() 
   
   for i in range(1, len(tokenized_sent)-1):        
      word_context_pair = [[word2index_map[tokenized_sent[i-1]], 
         word2index_map[tokenized_sent[i+1]]], word2index_map[tokenized_sent[i]]] 
      
      skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][0]]) 
      skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][1]]) 

def get_skipgram_batch(batch_size): 
   instance_indices = list(range(len(skip_gram_pairs))) 
      np.random.shuffle(instance_indices)
   batch = instance_indices[:batch_size] 
   x = [skip_gram_pairs[i][0] for i in batch] 
   y = [[skip_gram_pairs[i][1]] for i in batch] 
   return x, y 
   
#批处理示例
x_batch, y_batch = get_skipgram_batch(8) 
x_batch 
y_batch 
[index2word_map[word] for word in x_batch] [index2word_map[word[0]] for word in y_batch] 

#输入数据,标签 train_inputs=tf.placeholder(tf.int32, shape=[batch_size])
   train_labels = tf.placeholder(tf.int32, shape = [batch_size, 1]) 

# 嵌入查找表目前仅在 CPU 中实现
   tf.name_scope("embeddings"): 
   embeddings = tf.Variable(    
      tf.random_uniform([vocabulary_size, embedding_dimension], -1.0, 1.0), 
         name = embedding) 
   # 这本质上是一个查找表
   embed = tf.nn.embedding_lookup(embeddings, train_inputs) 
   
# 为 NCE 损失创建变量
nce_weights = tf.Variable(     
   tf.truncated_normal([vocabulary_size, embedding_dimension], stddev = 1.0/
      math.sqrt(embedding_dimension))) 
   
nce_biases = tf.Variable(tf.zeros([vocabulary_size])) 

loss = tf.reduce_mean(     
   tf.nn.nce_loss(weights = nce_weights, biases = nce_biases, inputs = embed, 
   labels = train_labels,num_sampled = negative_samples, 
   num_classes = vocabulary_size)) tf.summary.scalar("NCE_loss", loss) 
   
# 学习率衰减
global_step = tf.Variable(0, trainable = False) 
   learningRate = tf.train.exponential_decay(learning_rate = 0.1, 
   global_step = global_step, decay_steps = 1000, decay_rate = 0.95, staircase = True) 

train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(loss) 
   merged = tf.summary.merge_all() 
with tf.Session() as sess: 
   train_writer = tf.summary.FileWriter(LOG_DIR,    
      graph = tf.get_default_graph()) 
   saver = tf.train.Saver() 
   
   with open(os.path.join(LOG_DIR, metadata.tsv), "w") as metadata: 
      metadata.write(Name	Class
) for k, v in index2word_map.items(): 
      metadata.write(%s	%d
 % (v, k)) 
   
   config = projector.ProjectorConfig() 
   embedding = config.embeddings.add() embedding.tensor_name = embeddings.name 
   
   # 将此张量链接到其元数据文件(例如标签)。
   embedding.metadata_path = os.path.join(LOG_DIR, metadata.tsv) 
      projector.visualize_embeddings(train_writer, config) 
   
   tf.global_variables_initializer().run() 
   
   for step in range(1000): 
      x_batch, y_batch = get_skipgram_batch(batch_size) summary, _ = sess.run(
         [merged, train_step], feed_dict = {train_inputs: x_batch, train_labels: y_batch})
      train_writer.add_summary(summary, step)
      
      if step % 100 == 0:
         saver.save(sess, os.path.join(LOG_DIR, "w2v_model.ckpt"), step)
         loss_value = sess.run(loss, feed_dict = {
            train_inputs: x_batch, train_labels: y_batch})
         print("Loss at %d: %.5f" % (step, loss_value))

   # 在使用之前规范化嵌入
   norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True))
   normalized_embeddings = embeddings /
      norm normalized_embeddings_matrix = sess.run(normalized_embeddings)
   
ref_word = normalized_embeddings_matrix[word2index_map["one"]]

cosine_dists = np.dot(normalized_embeddings_matrix, ref_word)
ff = np.argsort(cosine_dists)[::-1][1:10] for f in ff: print(index2word_map[f])
print(cosine_dists[f])

上面的代码生成以下输出-

Word2vec

TensorFlow - 单词嵌入 - 无涯教程网无涯教程网提供Word embedding是从离散对象(如单词)映射到向量和实数的概念,可将离散的输入对象有效...https://www.learnfk.com/tensorflow/tensorflow-word-embedding.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/898150.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决Pycharm的Settings中Project不见了也无法选择Python Interpreter的方法

目录 一、问题如下二、解决方法 一、问题如下 突然打开项目没有python解释器,也无法重新配置python Interpreter,而且整个文件夹是黄色高亮的形式,如下显示,而且重新安装了pycharm也没用甚至说打开File–>Setting–>Projec…

网络编程套接字(1)

文章目录 网络编程套接字(1)1. 预备知识1.1 源IP与目的IP1.2 认识端口号1.3 理解 "端口号" 和 "进程ID"1.4 源端口号和目的端口号1.5 认识TCP协议和UDP协议(1) TCP(2) UDP 1.6 网络字节序 2. socket编程接口2.1 socket 常见API2.2 sockaddr结构 网络编程套…

深度学习环境搭建 cuda、模型量化bitsandbytes安装教程 windows、linux

cuda、cudann、conda安装教程 输入以下命令,查看 GPU 支持的最高 CUDA 版本。 nvidia-smi cuda安装(cudatoolkit) 前往 Nvidia 的 CUDA 官网:CUDA Toolkit Archive | NVIDIA Developer CUDA Toolkit 11.8 Downloads | NVIDIA …

react之路由的安装与使用

一、路由安装 路由官网2021.11月初,react-router 更新到 v6 版本。使用最广泛的 v5 版本的使用 npm i react-router-dom5.3.0二、路由使用 2.1 路由的简单使用 第一步 在根目录下 创建 views 文件夹 ,用于放置路由页面 films.js示例代码 export default functio…

IDM最新版2023不限速下载网盘详细操作教程

开启这个开关,让你的浏览器下载速度翻倍!大家有没有听说过IDM下载器,那是因为它的多线程下载功能,所以下载速度快,其实我们的浏览器也有多线程下载功能,只是默认关闭了而已,只需开启它,就可以有…

商城-学习整理-高级-性能压测缓存问题(十一)

目录 一、基本介绍1、性能指标2、JMeter1、JMeter 安装2、JMeter 压测示例1、添加线程组2、添加 HTTP 请求3、添加监听器4、启动压测&查看分析结果 3、JMeter Address Already in use 错误解决 二、性能监控1、jvm 内存模型2、堆3、jconsole 与 jvisualvm1、jvisualvm 能干…

sd-webui安装comfyui扩展

文章目录 导读ComfyUI 环境安装1. 安装相关组件2. 启动sd-webui3. 访问sd-webui 错误信息以及解决办法 导读 这篇文章主要给大家介绍如何在sd-webui中来安装ComfyUI插件 ComfyUI ComfyUI是一个基于节点流程式的stable diffusion的绘图工具,它集成了stable diffus…

第8章:集成学习

个体与集成 同质:相同的基学习器,实现容易,但是很难保证差异性。异质:不同的基学习器,实现复杂,不同模型之间本来就存在差异性,但是很难直接比较不同模型的输出,需要复杂的配准方法。…

【PACS源码】认识PACS的架构和工作流程

(一)PACS系统的组成及架构 PACS系统的基本组成部分包括:数字影像采集、通讯和网络、医学影像存储、医学影像管理、各类工作站五个部分。 而目前PACS系统的软件架构选型上看,主要有C/S和B/S两种形式。 C/S架构,即Client…

iMazing2.17.3免费版苹果传输电脑端文件数据工具

苹果手机在日常使用过程中可能会遇到iPhone内存不足的情况,遇到这种情况很多用户会选择删除照片来节省存储空间,大量删除照片可能会误删重要照片。另外iPhone可能会遇到自动重启、黑屏等故障。手机突然损坏,数据无法导出,此时备份…

判断链表中是否有环

如下图,如何判断链表中存在环路呢? 一种简单的方法描述: 设置两个链表指针p1和p2并指向链表,设置两个记录指针移动次数的变量c1和c2。在循环中,p1每次移动2个位置,c1加2;p1每次移动一个位置&am…

Redis高可用:哨兵机制(Redis Sentinel)详解

目录 1.什么是哨兵机制(Redis Sentinel) 2.哨兵机制基本流程 3.哨兵获取主从服务器信息 4.多个哨兵进行通信 5.主观下线和客观下线 6.哨兵集群的选举 7.新主库的选出 8.故障的转移 9.基于pub/sub机制的客户端事件通知 1.什么是哨兵机制&#xf…

被信息爆炸反噬了,自食恶果

我前两年回答的一个问题,最近频频收到点赞的消息提醒。 然后,我又思考了一下,我感觉信息价值危机随着生成式 AI 的诞生,可能会越来越严重。 什么问题呢? 有人提问: 现在中文互联网能搜索到的有价值信息越来…

【Android】设置-显示-屏保-启用时机-去除插入基座相关(不支持该功能的话)

设置-显示-屏保-启用时机-去除插入基座相关(不支持该功能的话) 1-项目场景:2-问题描述3-解决方案:4-代码修改前后效果对比图:代码修改前:代码修改后: 1-项目场景: 展锐平台 2-问题描…

C语言中常见的一些语法概念和功能

常用代码: 程序入口:int main() 函数用于定义程序的入口点。 输出:使用 printf() 函数可以在控制台打印输出。 输入:使用 scanf() 函数可以接收用户的输入。 条件判断:使用 if-else 语句可以根据条件执行不同的代码…

服装定制小程序

如今,人们对时尚的追求已不仅仅停留在传统的购买与穿搭上,而是更加注重个性化和定制化的需求。为满足这一需求,乔拓云网推出了一款创新的服装定制小程序,为用户提供定制专属时尚的全新旅途。 通过进入【乔拓云】后台,用…

大数据平台运维实训室建设方案

一、概况 本实训室的主要目的是培养大数据平台运维项目的实践能力,以数据计算、分析、挖掘和可视化的案例训练为辅助。同时,实训室也承担相关考评员与讲师培训考试、学生认证培训考试、社会人员认证培训考试、大数据技能大赛训练、大数据专业课程改革等多项任务。 实训室旨在培…

《游戏编程模式》学习笔记(五)原型模式 Prototype Pattern

原型的定义 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。 举个例子 假设我现在要做一款游戏,这个游戏里有许多不同种类的怪物,鬼魂,恶魔和巫师。这些怪物通过“生产者”进入这片区域,每种敌人…

C++11并发与多线程笔记(9) async、future、packaged_task、promise

C11并发与多线程笔记(9) async、future、packaged_task、promise 1、std::async、std::future创建后台任务并返回值2、std::packaged_task:打包任务,把任务包装起来3、std::promise3、小结 1、std::async、std::future创建后台任务…

【ARM Linux 系统稳定性分析入门及渐进10 -- GDB 初始化脚本介绍及使用】

文章目录 gdb 脚本介绍gdb 初始化脚本使用启动 gdb 的时候自动执行脚本gdb运行期间执行命令脚本 gdb 脚本介绍 GDB脚本是一种使用GDB命令语言编写的脚本,可以用来自动化一些常见的调试任务。这些脚本可以直接在GDB中运行,也可以通过GDB的-x参数或source…