31.Netty源码之客户端启动流程

news2025/1/12 20:53:31

highlight: arduino-light

客户端启动主要流程

如果看了服务器端的启动流程,这里简单看下就可以了。

java package io.netty.server; ​ import io.netty.bootstrap.Bootstrap; import io.netty.channel.*; import io.netty.channel.nio.NioEventLoopGroup; import io.netty.channel.socket.SocketChannel; import io.netty.channel.socket.nio.NioSocketChannel; ​ ​ public final class EchoClient { ​    public static void main(String[] args) throws Exception {        // Configure the client.        EventLoopGroup group = new NioEventLoopGroup();        ChannelInitializer<SocketChannel> channelInitializer = new ChannelInitializer<SocketChannel>() {            @Override            public void initChannel(SocketChannel ch) throws Exception {                ChannelPipeline p = ch.pipeline();                // p.addLast(new LoggingHandler(LogLevel.INFO));                p.addLast(new EchoClientHandler());           }       };        try {            Bootstrap b = new Bootstrap();            b.group(group)             .channel(NioSocketChannel.class)             .option(ChannelOption.TCP_NODELAY, true)             .handler(channelInitializer); ​            // Start the client.            ChannelFuture f = b.connect("127.0.0.1", 8090).sync(); ​            // Wait until the connection is closed.            f.channel().closeFuture().sync();       } finally {            // Shut down the event loop to terminate all threads.            group.shutdownGracefully();       }   } } ​ ​

创建客户端NioSocketChannel

1.创建NioSocketChannel

首先看下创建 Channel 的过程,直接跟进 channelFactory.newChannel() 的源码。

java public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> {    private final Constructor<? extends T> constructor;    public ReflectiveChannelFactory(Class<? extends T> clazz) {        ObjectUtil.checkNotNull(clazz, "clazz");        try {            //这里通过泛型反射+工厂 获取无参构造方法            //传进来的clazz是NioSocketChannel.class            this.constructor = clazz.getConstructor();       } catch (NoSuchMethodException e) {            throw new IllegalArgumentException("Class " + StringUtil.simpleClassName(clazz) +                    " does not have a public non-arg constructor", e);       }   }    @Override    public T newChannel() {        try {            // 反射创建对象            return constructor.newInstance();       } catch (Throwable t) {            throw new ChannelException("Unable to create Channel from class " + constructor.getDeclaringClass(), t);       }   }    // 省略其他代码 } ​

在前面 EchoServer的示例中,我们通过 channel(NioSocketChannel.class) 配置 Channel 的类型,工厂类 ReflectiveChannelFactory 是在该过程中被创建的。

从 constructor.newInstance() 我们可以看出,ReflectiveChannelFactory 通过反射创建出 NioSocketChannel 对象,所以我们重点需要关注 NioSocketChannel 的构造函数。

```java //private static final SelectorProvider //DEFAULTSELECTORPROVIDER = SelectorProvider.provider();

//SelectorProvider.provider() //1.读取配置根据配置的class获取provider 獲取不到到第二步 //2.通过spi获取provider 获取不到到第三步 //3.DefaultSelectorProvider#create创建provider //根据不同的系统创建不同的Selector 或者是说jdk不同 //Linux 下JOK 的下载和安装与Windows 下并没有太大的不同,只是对一些环境的设置稍有不同。 //在windows环境下的是 WindowsSelectorProvider public NioSocketChannel() { //DEFAULTSELECTORPROVIDER: 根据不同的系统返回不同的SelectorProvider this(DEFAULTSELECTORPROVIDER); }

public NioSocketChannel(SelectorProvider provider) {

// 很熟悉啊,newSocket(DEFAULT_SELECTOR_PROVIDER)是创建 JDK 底层的 SocketChannel
    this(newSocket(provider));
}

//根据不同的 SelectorProvider 创建不同的JDK 底层的 SocketChannel private static SocketChannel newSocket(SelectorProvider provider) { try { // 创建 JDK 底层的 SocketChannel 实现类是SocketChannelImpl
return provider.openSocketChannel(); } catch (IOException e) { throw new ChannelException("Failed to open a socket.", e); } }

public NioSocketChannel(Channel parent, SocketChannel socket) { super(parent, socket); config = new NioSocketChannelConfig(this, socket.socket()); }

protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) { //SelectionKey.OPREADread=1 事件 super(parent, ch, SelectionKey.OPREAD); }

protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); this.ch = ch; //这里不是注册 SelectionKey.OP_READ=1 事件 //只是赋值 this.readInterestOp = readInterestOp; try { //非阻塞模式 ch.configureBlocking(false); } catch (IOException e) { try { ch.close(); } catch (IOException e2) { logger.warn( "Failed to close a partially initialized socket.", e2); }

throw new ChannelException("Failed to enter non-blocking mode.", e);
    }
}

protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); } ```

SelectorProvider 是 JDK NIO 中的抽象类实现,通过 openServerSocketChannel() 方法可以用于创建服务端的 ServerSocketChannel。而且 SelectorProvider 会根据操作系统类型和版本的不同,返回不同的实现类,具体可以参考 DefaultSelectorProvider 的源码实现:

java public static SelectorProvider create() { String osname = AccessController .doPrivileged(new GetPropertyAction("os.name")); if (osname.equals("SunOS")) return createProvider("sun.nio.ch.DevPollSelectorProvider"); if (osname.equals("Linux")) return createProvider("sun.nio.ch.EPollSelectorProvider"); //默认返回的是Poll return new sun.nio.ch.PollSelectorProvider(); }

在这里我们只讨论 Linux 操作系统的场景,在 Linux 内核 2.6版本及以上都会默认采用 EPollSelectorProvider。如果是旧版本则使用 PollSelectorProvider。对于目前的主流 Linux 平台而言,都是采用 Epoll 机制实现的。

创建完 ServerSocketChannel,我们回到 NioServerSocketChannel 的构造函数,接着它会通过 super() 依次调用到父类的构造进行初始化工作,最终我们可以定位到 AbstractNioChannel 和 AbstractChannel 的构造函数:

java protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); // 省略其他代码 //设置为16 this.readInterestOp = readInterestOp; try { ch.configureBlocking(false); } catch (IOException e) { // 省略其他代码 } } protected AbstractChannel(Channel parent) { this.parent = parent; // Channel 全局唯一 id id = newId(); // unsafe 操作底层读写 unsafe = newUnsafe(); // pipeline 负责业务处理器编排 // 会初始化TailContext和HeadContext pipeline = newChannelPipeline(); }

2.设置pipeline

首先调用 AbstractChannel 的构造函数创建了三个重要的成员变量,分别为 id、unsafe、pipeline。

id 表示全局唯一的 Channel,

unsafe 用于操作底层数据的读写操作,

pipeline 负责业务处理器的编排。

3.设置非阻塞模式

初始化状态,pipeline 的内部结构只包含头尾两个节点,如下图所示。三个核心成员变量创建好之后,会回到 AbstractNioChannel 的构造函数,通过 ch.configureBlocking(false) 设置 Channel 是非阻塞模式。

netty17图.png

创建服务端 Channel 的过程我们已经讲完了,简单总结下其中几个重要的步骤:

java ReflectiveChannelFactory 通过反射创建 NioSocketChannel 实例; 创建 JDK 底层的SocketChannel;包装为NioSocketChannel 为 Channel 创建 id、unsafe、pipeline 三个重要的成员变量; 设置 Channel 为非阻塞模式。 将底层的SocketChannel包装为 NioSocketChannel。

初始化Channel

回到 ServerBootstrap 的 initAndRegister() 方法,继续跟进用于初始化服务端 Channel 的 init() 方法源码:

@Override @SuppressWarnings("unchecked") void init(Channel channel) { //获取pipeline ChannelPipeline p = channel.pipeline(); //添加客户端的handler方法指定的处理器到pipeline p.addLast(config.handler()); //设置选项 setChannelOptions (channel, options0().entrySet().toArray(newOptionArray(0)), logger); //设置属性 setAttributes(channel, attrs0().entrySet().toArray(newAttrArray(0))); }

init() 方法的源码比较长,我们依然拆解成两个部分来看:

1.添加客户端handler方法的处理器到pipeline

添加客户端的handler方法指定的处理器到pipeline

2.设置OPTION参数

设置 Socket 参数以及用户自定义属性。在创建客户端 Channel 时,Channel 的配置参数保存在 NioSocketChannelConfig 中,在初始化 Channel 的过程中,Netty 会将这些参数设置到 JDK 底层的 Socket 上,并把用户自定义的属性绑定在 Channel 上。

注册客户端 Channel

回到 initAndRegister() 的主流程,创建完客户端 Channel 之后,继续一层层跟进 register() 方法的源码:

```java @Override public final void register(EventLoop eventLoop, final ChannelPromise promise) { if (eventLoop == null) { throw new NullPointerException("eventLoop"); } if (isRegistered()) { promise.setFailure (new IllegalStateException("registered to an event loop already")); return; } if (!isCompatible(eventLoop)) { promise.setFailure( new IllegalStateException ("incompatible event loop type: " + eventLoop.getClass().getName())); return; }

AbstractChannel.this.eventLoop = eventLoop;

        if (eventLoop.inEventLoop()) {
            register0(promise);
        } else {
            try {
                eventLoop.execute(new Runnable() {
                    @Override
                    public void run() {
                        register0(promise);
                    }
                });
            } catch (Throwable t) {
                closeForcibly();
                closeFuture.setClosed();
                safeSetFailure(promise, t);
            }
        }
    }

```

Netty 会在线程池 EventLoopGroup 中选择一个 EventLoop 与当前 Channel 进行绑定,之后 Channel 生命周期内的所有 I/O 事件都由这个 EventLoop 负责处理,如 accept、connect、read、write 等 I/O 事件。

可以看出,不管是 EventLoop 线程本身调用,还是外部线程用,最终都会通过 register0() 方法进行注册:

```java private void register0(ChannelPromise promise) { try {

if (!promise.setUncancellable() || !ensureOpen(promise)) {
                return;
            }
            boolean firstRegistration = neverRegistered;
            // 1.调用 JDK 底层的 register() 进行注册
            doRegister();
            neverRegistered = false;
            registered = true;
            // 2.触发 handlerAdded 事件 底层调用了callHandlerAdded0
            pipeline.invokeHandlerAddedIfNeeded();

            safeSetSuccess(promise);
            //3.触发 channelRegistered 事件
            pipeline.fireChannelRegistered();
            //此时 Channel 还未注册绑定地址,所以处于非活跃状态
            //socket的注册不会走进下面if
            //socket接受连接创建的socket可以走进去。因为accept后就active了。
            if (isActive()) {
                //firstRegistration
                if (firstRegistration) {
                     // Channel 当前状态为活跃时,触发 channelActive 事件
                    pipeline.fireChannelActive();
                } else if (config().isAutoRead()) {
                    //开始读
                    beginRead();
                }
            }
        } catch (Throwable t) {
            // Close the channel directly to avoid FD leak.
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }

```

register0() 主要做了四件事:

1.调用 JDK 底层进行 Channel 注册、

2.触发 handlerAdded 事件、

3.触发 channelRegistered 事件、

4.Channel 当前状态为活跃时,触发 channelActive 事件。

1.注册Channel 绑定选择器和注册事件0

为什么注册0?因为还没初始化完成

我们对它们逐一进行分析。

首先看下 JDK 底层注册 Channel 的过程,对应 doRegister() 方法的实现逻辑。

```java @Override protected void doRegister() throws Exception { boolean selected = false; for (;;) { try { logger.info("initial register: " + 0); // 调用 JDK 底层的 register() 进行注册 // eventLoop().unwrappedSelector()指的是未包装的selector // 包装的selector指的是 selectKey // 注意这里注册的事件是 0 是 0 是 0 // 注意这里注册的事件是 0 是 0 是 0 // 注意这里注册的事件是 0 是 0 是 0 // this = NioServerSocketChannel selectionKey = javaChannel() .register(eventLoop() .unwrappedSelector(), 0, this); return; } catch (CancelledKeyException e) { if (!selected) { eventLoop().selectNow(); selected = true; } else { throw e; } } } }

public final SelectionKey register(Selector sel, int ops, Object att)throws ClosedChannelException{ synchronized (regLock) { // 省略其他代码 SelectionKey k = findKey(sel); if (k != null) { k.interestOps(ops); //att = NioSocketChannel k.attach(att); } if (k == null) { synchronized (keyLock) { if (!isOpen()) throw new ClosedChannelException(); k = ((AbstractSelector)sel).register(this, ops, att); addKey(k); } } return k; } } ```

javaChannel().register() 负责调用 JDK 底层,将 Channel 注册到 Selector 上,register() 的第三个入参传入的是 Netty 自己实现的 NioSocketChannel 对象,调用 register() 方法会将NioSocketChannel 绑定在 JDK 底层 Channel 的 attachment 上。

这样在每次 Selector 对象进行事件循环时,Netty 都可以从返回的 JDK 底层 Channel 中获得自己的 Channel 对象。

2.触发handlerAdded 事件

完成 Channel 向 Selector 注册后,接下来就会触发 Pipeline 一系列的事件传播。在事件传播之前,用户自定义的业务处理器是如何被添加到 Pipeline 中的呢?

答案就在pipeline.invokeHandlerAddedIfNeeded() 当中,我们重点看下 handlerAdded 事件的处理过程。invokeHandlerAddedIfNeeded() 方法的调用层次比较深,推荐你结合上述 Echo 服务端示例,使用 IDE Debug 的方式跟踪调用栈,如下图所示。

java final void invokeHandlerAddedIfNeeded() { assert channel.eventLoop().inEventLoop(); if (firstRegistration) { firstRegistration = false; // We are now registered to the EventLoop. It's time to call the callbacks for the ChannelHandlers, // that were added before the registration was done. callHandlerAddedForAllHandlers(); } }

```java private void callHandlerAddedForAllHandlers() { final PendingHandlerCallback pendingHandlerCallbackHead; synchronized (this) { assert !registered;

// This Channel itself was registered.
        registered = true;

        pendingHandlerCallbackHead = this.pendingHandlerCallbackHead;
        // Null out so it can be GC'ed.
        this.pendingHandlerCallbackHead = null;
    }


    PendingHandlerCallback task = pendingHandlerCallbackHead;
    while (task != null) {
        //task是PendingHandlerAddedTask
        //进入PendingHandlerAddedTask的execute方法
        task.execute();
        task = task.next;
    }
}

```

java @Override void execute() { EventExecutor executor = ctx.executor(); if (executor.inEventLoop()) { //调用callHandlerAdded0 callHandlerAdded0(ctx); } else { try { executor.execute(this); } catch (RejectedExecutionException e) { remove0(ctx); ctx.setRemoved(); } } } }

```java private void callHandlerAdded0(final AbstractChannelHandlerContext ctx) { try { ctx.callHandlerAdded(); } catch (Throwable t) { boolean removed = false; try { remove0(ctx); ctx.callHandlerRemoved(); removed = true; } catch (Throwable t2) { if (logger.isWarnEnabled()) { logger.warn("Failed to remove a handler: " + ctx.name(), t2); } }

if (removed) {
            fireExceptionCaught(new ChannelPipelineException(
                    ctx.handler().getClass().getName() +
                    ".handlerAdded() has thrown an exception; removed.", t));
        } else {
            fireExceptionCaught(new ChannelPipelineException(
                    ctx.handler().getClass().getName() +
                    ".handlerAdded() has thrown an exception; also failed to remove.", t));
        }
    }
}

```

```java final void callHandlerAdded() throws Exception {

if (setAddComplete()) {
        //ChannelInitializer继承自ChannelHandlerAdapter
        //此处调用的handleradded方法是ChannelHandlerAdapter#handlerAdded
        //其实就是触发添加处理器事件
        handler().handlerAdded(this);
    }
}

```

我们在客户端中指定的ChannelInitializer也是1个ChannelInitializer重写了initChannel。

看到这里恍然大悟,这不就是他妈的模板模式吗?!

我们首先抓住 ChannelInitializer 中的handlerAdded核心源码,逐层进行分析。

java // ChannelInitializer public void handlerAdded(ChannelHandlerContext ctx) throws Exception { if (ctx.channel().isRegistered()) { //调用初始化方法 //调用的其实就是我们在客户端指定的handler方法中返回的处理器 if (initChannel(ctx)) { //移除我们在客户端指定的handler方法中返回的处理器 removeState(ctx); } } }

其中有一个点不要混淆,handler() 方法中的handler是添加到客户端的Pipeline 上

完成 这一步之后,handler() 方法中的ChannelInitializer的initChannel已经被调用,添加处理器到客户端的Pipeline 上。

3.监听Read事件

具体流程

1.在nio的run方法中processSelectedKeys();

2.

```java private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); if (!k.isValid()) { final EventLoop eventLoop; try { eventLoop = ch.eventLoop(); } catch (Throwable ignored) { return; }

if (eventLoop != this || eventLoop == null) {
            return;
        }
        // close the channel if the key is not valid anymore
        unsafe.close(unsafe.voidPromise());
        return;
    }

    try {
        // k.readyOps() = 8
        int readyOps = k.readyOps();
        //SelectionKey.OP_CONNECT=8
        //2个都是8进入判断
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            //当前的注册事件是0
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);
            //完成连接
            unsafe.finishConnect();
        }

        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            ch.unsafe().forceFlush();
        }


        //处理读请求(断开连接)或接入连接
        if ((readyOps & (SelectionKey.OP_READ
                         | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

```

```java @Override protected void doBeginRead() throws Exception { // Channel.read() or ChannelHandlerContext.read() was called final SelectionKey selectionKey = this.selectionKey; if (!selectionKey.isValid()) { return; }

readPending = true;

    final int interestOps = selectionKey.interestOps();
    //假设之前没有监听readInterestOp,则监听readInterestOp
    if ((interestOps & readInterestOp) == 0) {
        //NioServerSocketChannel: readInterestOp = 1
        logger.info("interest ops: " + readInterestOp);
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

```

整个服务端 Channel 注册的流程我们已经讲完,注册过程中 Pipeline 结构的变化值得你再反复梳理,从而加深理解。目前服务端还是不能工作的,还差最后一步就是进行端口绑定,我们继续向下分析。

端口绑定

回到 ServerBootstrap 的 bind() 方法,我们继续跟进端口绑定 doBind0() 的源码。

java public final void bind(final SocketAddress localAddress, final ChannelPromise promise) { assertEventLoop(); // 省略其他代码 boolean wasActive = isActive(); try { // 调用 JDK 底层进行端口绑定 doBind(localAddress); } catch (Throwable t) { safeSetFailure(promise, t); closeIfClosed(); return; } if (!wasActive && isActive()) { invokeLater(new Runnable() { @Override public void run() { // 触发 channelActive 给ServerSocketChannel注册 // SelectionKey.OP_ACCEPT事件 // 所有事件的触发都是通过pipeline pipeline.fireChannelActive(); } }); } safeSetSuccess(promise); }

bind() 方法主要做了两件事,分别为调用 JDK 底层进行端口绑定;绑定成功后并触发 channelActive 事件。下面我们逐一进行分析。

首先看下调用 JDK 底层进行端口绑定的 doBind() 方法:

java protected void doBind(SocketAddress localAddress) throws Exception { if (PlatformDependent.javaVersion() >= 7) { javaChannel().bind(localAddress, config.getBacklog()); } else { javaChannel().socket().bind(localAddress, config.getBacklog()); } }

Netty 会根据 JDK 版本的不同,分别调用 JDK 底层不同的 bind() 方法。我使用的是 JDK8,所以会调用 JDK 原生 Channel 的 bind() 方法。执行完 doBind() 之后,服务端 JDK 原生的 Channel 真正已经完成端口绑定了。

完成端口绑定之后,Channel 处于活跃 Active 状态,然后会调用 pipeline.fireChannelActive() 方法触发 channelActive 事件。 即Channel 处于就绪状态,可以被读写。

我们可以一层层跟进 fireChannelActive() 方法,发现其中比较重要的部分:

java // DefaultChannelPipeline#channelActive public void channelActive(ChannelHandlerContext ctx) { ctx.fireChannelActive(); readIfIsAutoRead(); } // AbstractNioChannel#doBeginRead protected void doBeginRead() throws Exception { // Channel.read() or ChannelHandlerContext.read() was called final SelectionKey selectionKey = this.selectionKey; if (!selectionKey.isValid()) { return; } readPending = true; final int interestOps = selectionKey.interestOps(); if ((interestOps & readInterestOp) == 0) { // 注册 OP_ACCEPT 事件到服务端 Channel 的事件集合 selectionKey.interestOps(interestOps | readInterestOp); } }

可以看出,在执行完 channelActive 事件传播之后,会调用 readIfIsAutoRead() 方法触发 Channel 的 read 事件,而它最终调用到 AbstractNioChannel 中的 doBeginRead() 方法,其中 readInterestOp 参数就是在前面初始化 Channel 所传入的 SelectionKey.OPACCEPT 事件,所以 OPACCEPT 事件会被注册到 Channel 的事件集合中。

到此为止,整个服务端已经真正启动完毕。我们总结一下服务端启动的全流程,如下图所示。

图片5.png

创建服务端 Channel:本质是创建 JDK 底层原生的 Channel,并初始化几个重要的属性,包括 id、unsafe、pipeline 等。

初始化服务端 Channel:设置 Socket 参数以及用户自定义属性,并添加1个特殊的处理器 ChannelInitializer,ChannelInitializer的功能是添加 LoggingHandler 和 ServerBootstrapAcceptor,但是并没有添加进去。

注册服务端 Channel:调用 JDK 底层将 Channel 注册到 Selector上。执行ChannelInitializer的initChannel真正添加handler

端口绑定:调用 JDK 底层进行端口绑定,并触发 channelActive 事件,把 OP_ACCEPT 事件注册到NioServerSocketChannel 的事件集合中。

1.添加handler方法中的指定handlerA到pipeline

2.执行pipeline中handlerA

3.将handlerA中 添加的hanlders添加到pipeline

4.移除handler方法中的指定handlerA

5.和服务器建立连接

5.执行hanlders向服务器发送数据

6.执行hanlders接受服务器数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/897355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

酒店要如何应对旅游旺季?报修工单管理系统哪家好?

酒店在高峰旅游时期是其最为繁忙的阶段&#xff0c;这时要处理的报修事项比较多&#xff0c;因此应对措施变得尤为重要。填补酒店房间、应对设备故障等情况&#xff0c;造成了来宾数量和压力的急增&#xff0c;因此需要考虑并采用更加有效的安全保障和服务措施&#xff0c;以确…

传输层协议——TCP(上)

文章目录 1. TCP协议1.1 TCP协议段格式1.2 确认应答(ACK)机制1.3 16位窗口大小1.4 6位标志位1.4.1 TCP三次握手 1.5 确认应答(ACK)机制1.6 超时重传机制1.7 连接管理机制1.7.1 理解TIME_WAIT状态1.7.2 理解 CLOSE_WAIT 状态 1. TCP协议 TCP全称为传输控制协议&#xff0c;意思…

Unity 找不到 Navigation 组件的解决

当我们想利用unity 里面的Navigation 组件来实现我们的物体的自动导航时&#xff0c;有时竟然会发现我们的菜单栏里面找不到 该组件 这时我们应该怎么办&#xff1f; 请确保你的项目中已经导入了Unity的AI模块。要导入该模块&#xff0c;请打开"Project Settings"&am…

论文学习——PixelSNAIL:An Improved Autoregressive Geenrative Model

文章目录 引言论文翻译Abstract问题 Introduction第一部分问题 第二部分问题 Model Architecture网络结构第一部分问题第二部分问题 Experiments实验问题 Conclusion结论问题 总结参考 引言 这篇文章&#xff0c;是《PixelSNAIL:An Improved Autoregressive Geenrative Model》…

在自定义数据集上使用 Detectron2 和 PyTorch 进行人脸检测

本文讲讲述如何使用Python在自定义人脸检测数据集上微调预训练的目标检测模型。学习如何为Detectron2和PyTorch准备自定义人脸检测数据集&#xff0c;微调预训练模型以在图像中找到人脸边界。 人脸检测是在图像中找到&#xff08;边界的&#xff09;人脸的任务。这在以下情况下…

STM32F40X系列FSMC8路驱动LCD显示屏(LY-TFT30-39P-1509 芯片hx8352)

hx8352_8080_8bit_FMSC板级驱动 1.LCD相关1.1LCD参数1.2 LCD引脚1.3 LCD实物1.4 LCD引脚解释 2.接线关系3.STM32F40x基于FMSC16bit修改1)地址偏移2)删除多余GPIO3)修改FMSC的配置4&#xff09;LCD初始化寄存器 3.板驱动程序4.运行结果 1.LCD相关 1.1LCD参数 LCD控制芯片&…

C数据结构与算法——无向图(最小生成树) 应用

实验任务 (1) 掌握Kruskal最小生成树算法&#xff1b; (2) 掌握Prim最小生成树算法。 实验内容 (1) 随机生成一个无向网 G ( V, E )&#xff0c;V { A, B, C, D, E, F }&#xff0c;| E | 11&#xff0c;边的权值取值范围为 [ 1, 40 ]&#xff1b; (2) 使用Prim算法求出图…

离散化思想——只处理有效数据的优化思想

离散化思想——只处理有效数据的优化思想 什么是离散化离散化题目——校门外的树&#xff08;超强版&#xff0c;1e9&#xff09;题目描述输入格式输出格式样例样例输入样例输出 提示 思路分析朴素做法离散化&#xff01;&#xff01;代码分析数组循环 什么是离散化 离散化思想…

C语言之浮点数_数据存储篇(2)

目录 浮点数 什么是浮点数呢&#xff1f; 为什么叫浮点数&#xff1f; 浮点数家族 浮点数表示的范围&#xff1f; 浮点数存储的例子 浮点数的存储方式 写成规定形式是怎样的&#xff1f; 那SME在内存中如何分配的呢&#xff1f; 为什么要这样存储&#xff1f; 浮点…

44、TCP报文(二)

接上节内容&#xff0c;本节我们继续TCP报文首部字段含义的学习。上节为止我们学习到“数据偏移”和“保留”字段。接下来我们学习后面的一些字段&#xff08;暂不包含“检验和”的计算方法和选项字段&#xff09;。 TCP首部结构&#xff08;续&#xff09; “数据偏移”和“保…

人工智能在车牌识别中的应用与影响

引言&#xff1a;车牌识别技术是基于人工智能的一种重要应用&#xff0c;通过对监控视频中的车辆图像进行处理和分析&#xff0c;可以快速、准确地识别车牌号码。这项技术的广泛应用可以帮助交通管理、停车场管理&#xff0c;甚至追踪犯罪嫌疑人的车辆。本文将详细探讨车牌识别…

从LeakCanary看ViewModel生命周期监控

前面两篇文章中已经了解了LeakCanary中Service和Fragment生命周期监控的实现&#xff0c;那么ViewModel生命周期监控又是怎么实现的呢&#xff1f; 同样的&#xff0c;要了解ViewModel生命周期监控&#xff0c;我们首先应该清楚在代码结构中ViewModel是如何存储获取的&#xf…

【零基础自用】理解python为什么要用虚拟环境

不知道学过MATLAB或者R的小伙伴刚刚接触python的时候会不会被各种python版本&#xff0c;包版本&#xff0c;虚拟环境之类的搞的头晕眼花。 问题一 包版本 先来假设&#xff0c;我们自己开发了一个包MyPackage 1.0&#xff0c;里面包含一个模块叫PreTrained&#xff0c;然后去…

Python爬虫(十三)_案例:使用XPath的爬虫

本篇是使用XPath的案例 案例&#xff1a;使用XPath的爬虫 现在我们用XPath来做一个简单的爬虫&#xff0c;我们尝试爬取某个贴吧里的所有帖子且将该帖子里每个楼层发布的图片下载到本地。 #-*- coding:utf-8 -*- #tieba_xpath.py"""作用&#xff1a;本案例使用…

【AGC】Publishing api怎么上传绿色认证审核材料

【问题描述】 华为应用市场会对绿色应用标上特有的绿色标识&#xff0c;代表其通过华为终端开放实验室DevEco云测平台的兼容性、稳定性、安全、功耗和性能的检测和认证&#xff0c;是应用高品质的象征。想要自己的应用认证为绿色应用就需要在发布应用时提供绿色认证审核材料&a…

Go语言基础之基本数据类型

Go语言中有丰富的数据类型&#xff0c;除了基本的整型、浮点型、布尔型、字符串外&#xff0c;还有数组、切片、结构体、函数、map、通道&#xff08;channel&#xff09;等。Go 语言的基本类型和其他语言大同小异。 基本数据类型 整型 整型分为以下两个大类&#xff1a; 按…

echarts 关于折线统计图常用的属性设置--超详细(附加源码)

文章目录 折线统计图设置x轴字体大小及字体颜色设置y轴字体大小及字体颜色设置背景颜色及设置折线颜色设置折线效果图显示阴影折线图位置及标签位置设置鼠标悬浮折线弹出窗口显示对应的数据设置自动横向滚动 总结 大家好&#xff01;近期我会分享几篇关于echarts方面的技术点&a…

easy-es 使用

1、pom中引入依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.14.0</version></dependency><dependency><groupId>org.…

CentOS ens160 显示disconnected

使用nmcli device查看网卡状态&#xff0c;显示如图&#xff1a; 检查宿主机系统VMware DHCP Sevice和VMware NAT Sevice服务是否正常运行。 右键点击我的电脑管理按钮&#xff0c;打开计算机管理点击服务

C语言实例_异或校验算法

一、异或校验算法 异或校验算法&#xff08;XOR校验&#xff09;是一种简单的校验算法&#xff0c;用于检测数据在传输或存储过程中是否发生了错误。通过将数据中的所有比特位相异或&#xff0c;生成一个校验码&#xff0c;然后将该校验码与接收到的数据进行比较&#xff0c;以…