目录
1.Redis持久化简介
2.RDB持久化
2.1 什么是 RDB 持久化?
2.2 触发方式
2.3 Redis.conf中配置RDB
2.4 RDB 更深入理解
2.5 RDB优缺点
3.AOF持久化
3.1 什么是 AOF 持久化?
3.2 如何实现AOF
3.3 Redis.conf中配置AOF
3.4 深入理解AOF重写
4.RDB和AOF混合方式(4.0版本)
5.从持久化中恢复数据
1.Redis持久化简介
首先什么是Redis的持久化呢?
Redis作为一个键值对内存数据库(NoSQL),数据都存储在内存当中,在处理客户端请求时,所有操作都在内存当中进行,如下所示:
这样做有什么问题呢?
存储在内存当中的数据,只要服务器关机(各种原因引起的),内存中的数据就会消失,不仅服务器关机会造成数据消失,Redis服务器守护进程退出,内存中的数据也一样会消失。
对于只把Redis当缓存来用的项目来说,数据消失或许问题不大,重新从数据源把数据加载进来就可以了,但如果直接把用户提交的业务数据存储在Redis当中,把Redis作为数据库来使用,在其放存储重要业务数据,那么Redis的内存数据丢失所造成的影响也许是毁灭性。
为了避免内存中数据丢失,Redis提供了对持久化的支持,我们可以选择不同的方式将数据从内存中保存到硬盘当中,使数据可以持久化保存。
Redis 不同于 Memcached 的很重要一点就是,Redis 支持持久化,而且支持 3 种持久化方式:
- 快照(snapshotting,RDB)
- 只追加文件(append-only file, AOF)
- RDB 和 AOF 的混合持久化(Redis 4.0 新增)
官方文档地址:Redis persistence | Redis
2.RDB持久化
2.1 什么是 RDB 持久化?
RDB 就是 Redis DataBase 的缩写,中文名为快照/内存快照,RDB持久化是把当前进程数据生成快照保存到磁盘上的过程,由于是某一时刻的快照,那么快照中的值要早于或者等于内存中的值。
Redis 可以通过创建快照来获得存储在内存里面的数据在 某个时间点 上的副本。Redis 创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本,还可以将快照留在原地以便重启服务器的时候使用。
2.2 触发方式
触发RDB持久化的方式有2种,分别是手动触发和自动触发。
手动触发
-
save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存 比较大的实例会造成长时间阻塞,线上环境不建议使用
-
bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短
注意:此处,redis采用的是多进程的方式,来完成的并发编程,fork是linux系统提供的创建一个子进程的api,如果是其他系统,比如windows,创建子进程就不是fork(createProcess)
bgsave流程图如下所示:
具体流程如下:
- redis客户端执行bgsave命令或者自动触发bgsave命令;
- 主进程判断当前是否已经存在正在执行的子进程,如果存在,那么主进程直接返回;
- 如果不存在正在执行的子进程,那么就fork一个新的子进程进行持久化数据,fork过程是阻塞的,fork操作完成后主进程即可执行其他操作;
- 子进程先将数据写入到临时的RDB文件中,待快照数据写入完成后再删除旧的RDB文件,将新的临时RDB文件改名为dump.rdb文件,自始至终RDB文件是只有一份的;
- 同时发送信号给主进程,通知主进程rdb持久化完成,主进程更新相关的统计信息。
注意:
Fork创建子进程简单粗暴,直接把当前的主进程(父进程)复制一份,作为子进程,一旦复制完成,父子进程就是两个独立的进程,各自执行各自的任务
随着fork的进行,子进程的这个内存里也会存在和刚才父进程中一模一样的变量,因此,复制出来的这个(子进程)的内存中的数据就是和(父进程)是一样的,接下来安排子进程去执行“持久化”操作,也就相当与把父进程本体这里的内存数据给持久化了
存在一个问题:如果当前redis服务器中存储的数据特别多,内存消耗很大,此时进行上述的复制操作,是否会有很大的性能开销?
此时的性能开销其实是很小的,fork在进行内存拷贝的时候,不是直接拷贝所有数据,而是通过“写时拷贝”这个机制来完成的
如果子进程中的内存数据和父进程中的内存数据完全一样,此时就不会触发真正的拷贝动作,一旦某一方对内存数据做出了修改,这个时候才会真正触发物理内存的拷贝,而且在bgsave这个场景下,绝大部分的内存数据,是不需要改变的,因此子进程的“写时拷贝”并不会触发很多次,也就保证了整体的“拷贝时间”是可控的,高效的。
自动触发
-
Redis.conf中配置
save m n
,即在m秒内有n次修改时,自动触发bgsave生成rdb文件; -
主从复制时,从节点要从主节点进行全量复制时也会触发bgsave操作,生成当时的快照发送到从节点;
-
执行debug reload命令重新加载Redis时也会触发bgsave操作;
-
默认情况下执行shutdown命令时,如果没有开启AOF持久化,那么也会触发bgsave操作;
注意:shutdown命令与service redis-server restart同理,都会自动触发
2.3 Redis.conf中配置RDB
快照周期:内存快照虽然可以通过技术人员手动执行SAVE或BGSAVE命令来进行,但生产环境下多数情况都会设置其周期性执行条件。
- Redis中默认的周期新设置
# 周期性执行条件的设置格式为
save <seconds> <changes>
# 默认的设置为:
save 900 1
save 300 10
save 60 10000
# 以下设置方式为关闭RDB快照功能
save ""
以上三项默认信息设置代表的意义是:
-
如果900秒内有1条Key信息发生变化,则进行快照;
-
如果300秒内有10条Key信息发生变化,则进行快照;
-
如果60秒内有10000条Key信息发生变化,则进行快照。
我们可以按照这个规则,根据自己的实际请求压力进行设置调整。
-
其它相关配置
# 文件名称
dbfilename dump.rdb
# 文件保存路径
dir /home/work/app/redis/data/
# 如果持久化出错,主进程是否停止写入
stop-writes-on-bgsave-error yes
# 是否压缩
rdbcompression yes
# 导入时是否检查
rdbchecksum yes
dbfilename
:RDB文件在磁盘上的名称。
dir
:RDB文件的存储路径。默认设置为“./”,也就是Redis服务的主目录。
stop-writes-on-bgsave-error
:上文提到的在快照进行过程中,主进程照样可以接受客户端的任何写操作的特性,是指在快照操作正常的情况下。如果快照操作出现异常(例如操作系统用户权限不够、磁盘空间写满等等)时,Redis就会禁止写操作。这个特性的主要目的是使运维人员在第一时间就发现Redis的运行错误,并进行解决。一些特定的场景下,您可能需要对这个特性进行配置,这时就可以调整这个参数项。该参数项默认情况下值为yes,如果要关闭这个特性,指定即使出现快照错误Redis一样允许写操作,则可以将该值更改为no。
rdbcompression
:该属性将在字符串类型的数据被快照到磁盘文件时,启用LZF压缩算法。Redis官方的建议是请保持该选项设置为yes,因为“it’s almost always a win”。
rdbchecksum
:从RDB快照功能的version 5 版本开始,一个64位的CRC冗余校验编码会被放置在RDB文件的末尾,以便对整个RDB文件的完整性进行验证。这个功能大概会多损失10%左右的性能,但获得了更高的数据可靠性。所以如果您的Redis服务需要追求极致的性能,就可以将这个选项设置为no。
2.4 RDB 更深入理解
由于生产环境中我们为Redis开辟的内存区域都比较大(例如6GB),那么将内存中的数据同步到硬盘的过程可能就会持续比较长的时间,而实际情况是这段时间Redis服务一般都会收到数据写操作请求。那么如何保证数据一致性呢?
RDB中的核心思路是Copy-on-Write,来保证在进行快照操作的这段时间,需要压缩写入磁盘上的数据在内存中不会发生变化。在正常的快照操作中,一方面Redis主进程会fork一个新的快照子进程专门来做这个事情,这样保证了Redis服务不会停止对客户端包括写请求在内的任何响应。另一方面这段时间发生的数据变化会以副本的方式存放在另一个新的内存区域,待快照操作结束后才会同步到原来的内存区域。
举个例子:如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。
在进行快照操作的这段时间,如果发生服务崩溃怎么办?
很简单,在没有将数据全部写入到磁盘前,这次快照操作都不算成功。如果出现了服务崩溃的情况,将以上一次完整的RDB快照文件作为恢复内存数据的参考。也就是说,在快照操作过程中不能影响上一次的备份数据。Redis服务会在磁盘上创建一个临时文件进行数据操作,待操作成功后才会用这个临时文件替换掉上一次的备份。
如果将RDB文件故意改坏,会发生什么?
2.5 RDB优缺点
-
优点
- RDB文件是某个时间节点的快照,默认使用LZF算法进行压缩,压缩后的文件体积远远小于内存大小,适用于备份、全量复制等场景;
- Redis加载RDB文件恢复数据要远远快于AOF方式;
-
缺点
- RDB方式实时性不够,无法做到秒级的持久化;
- 每次调用bgsave都需要fork子进程,fork子进程属于重量级操作,频繁执行成本较高;
- RDB文件是二进制的,没有可读性,AOF文件在了解其结构的情况下可以手动修改或者补全;
- 版本兼容RDB文件问题;
- 还存在一个问题,在两次生成快照之间,实时的数据可能会随着重启而丢失
3.AOF持久化
3.1 什么是 AOF 持久化?
与RDB存储某个时刻的快照不同,AOF持久化方式会记录客户端对服务器的每一次写操作命令,并将这些写操作以Redis协议追加保存到以后缀为aof文件末尾,在Redis服务器重启时,会加载并运行aof文件的命令,以达到恢复数据的目的。
与快照持久化相比,AOF 持久化的实时性更好。默认情况下 Redis 没有开启 AOF方式(Redis 6.0 之后已经默认是开启了)
Redis要求高性能,采用写文件日志有两方面好处:
- 避免额外的检查开销:Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。
- 不会阻塞当前的写操作
但这种方式存在潜在风险:
- 如果命令执行完成,写日志之前宕机了,会丢失数据。
- 主线程写磁盘压力大,导致写盘慢,阻塞后续操作。
3.2 如何实现AOF
AOF 工作流程图如下:
AOF日志记录Redis的每个写命令,步骤分为:命令追加(append)、文件写入(write)和文件同步(sync)。
-
命令追加 当AOF持久化功能打开了,服务器在执行完一个写命令之后,会以协议格式将被执行的写命令追加到服务器的 aof_buf 缓冲区。
-
文件写入和同步 关于何时将 aof_buf 缓冲区的内容写入AOF文件中,Redis提供了三种写回策略:
Always
,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
Everysec
,每秒写回:每个写命令执行完,只是先把日志写到AOF文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;
No
,操作系统控制的写回:每个写命令执行完,只是先把日志写到AOF文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。
- 三种写回策略的优缺点
上面的三种写回策略体现了一个重要原则:trade-off,取舍,指在性能和可靠性保证之间做取舍。
关于AOF的同步策略是涉及到操作系统的 write 函数和 fsync 函数的,在《Redis设计与实现》中是这样说明的:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数,将一些数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区的空间被填满或超过了指定时限后,才真正将缓冲区的数据写入到磁盘里。
这样的操作虽然提高了效率,但也为数据写入带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失。为此,系统提供了fsync、fdatasync同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保写入数据的安全性。
3.3 Redis.conf中配置AOF
默认情况下,Redis是没有开启AOF的,可以通过配置redis.conf文件来开启AOF持久化,关于AOF的配置如下:
# appendonly参数开启AOF持久化
appendonly no
# AOF持久化的文件名,默认是appendonly.aof
appendfilename "appendonly.aof"
# AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的
dir ./
# 同步策略
# appendfsync always
appendfsync everysec
# appendfsync no
# aof重写期间是否同步
no-appendfsync-on-rewrite no
# 重写触发配置
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# 加载aof出错如何处理
aof-load-truncated yes
# 文件重写策略
aof-rewrite-incremental-fsync yes
以下是Redis中关于AOF的主要配置信息:
appendonly
:默认情况下AOF功能是关闭的,将该选项改为yes以便打开Redis的AOF功能。
appendfilename
:这个参数项很好理解了,就是AOF文件的名字。
appendfsync
:这个参数项是AOF功能最重要的设置项之一,主要用于设置“真正执行”操作命令向AOF文件中同步的策略。
什么叫“真正执行”呢?还记得Linux操作系统对磁盘设备的操作方式吗? 为了保证操作系统中I/O队列的操作效率,应用程序提交的I/O操作请求一般是被放置在linux Page Cache中的,然后再由Linux操作系统中的策略自行决定正在写到磁盘上的时机。而Redis中有一个fsync()函数,可以将Page Cache中待写的数据真正写入到物理设备上,而缺点是频繁调用这个fsync()函数干预操作系统的既定策略,可能导致I/O卡顿的现象频繁 。
appendfsync参数项可以设置三个值,分别是:always、everysec、no,默认的值为everysec。
no-appendfsync-on-rewrite
:always和everysec的设置会使真正的I/O操作高频度的出现,甚至会出现长时间的卡顿情况,这个问题出现在操作系统层面上,所有靠工作在操作系统之上的Redis是没法解决的。为了尽量缓解这个情况,Redis提供了这个设置项,保证在完成fsync函数调用时,不会将这段时间内发生的命令操作放入操作系统的Page Cache(这段时间Redis还在接受客户端的各种写操作命令)。
auto-aof-rewrite-percentage
:更多时候我们需要依靠Redis中对AOF文件的自动重写策略。Redis中对触发自动重写AOF文件的操作提供了两个设置:auto-aof-rewrite-percentage表示如果当前AOF文件的大小超过了上次重写后AOF文件的百分之多少后,就再次开始重写AOF文件。例如该参数值的默认设置值为100,意思就是如果AOF文件的大小超过上次AOF文件重写后的1倍,就启动重写操作。
auto-aof-rewrite-min-size
:参考auto-aof-rewrite-percentage选项的介绍,auto-aof-rewrite-min-size设置项表示启动AOF文件重写操作的AOF文件最小大小。如果AOF文件大小低于这个值,则不会触发重写操作。注意,auto-aof-rewrite-percentage和auto-aof-rewrite-min-size只是用来控制Redis中自动对AOF文件进行重写的情况,如果是技术人员手动调用“BGREWRITEAOF”命令,则不受这两个限制条件左右。
3.4 深入理解AOF重写
AOF会记录每个写命令到AOF文件,随着时间越来越长,AOF文件会变得越来越大。如果不加以控制,会对Redis服务器,甚至对操作系统造成影响,而且AOF文件越大,数据恢复也越慢。为了解决AOF文件体积膨胀的问题,Redis提供AOF文件重写机制来对AOF文件进行“瘦身”。
- 图例解释AOF重写
Redis通过创建一个新的AOF文件来替换现有的AOF,新旧两个AOF文件保存的数据相同,但新AOF文件没有了冗余命令。
关于AOF重写的流程看下图:
4.RDB和AOF混合方式(4.0版本)
Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。
这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。
如下图所示,T1 和 T2 时刻的修改,用 AOF 日志记录,等到第二次做全量快照时,就可以清空 AOF 日志,因为此时的修改都已经记录到快照中了,恢复时就不再用日志了。
这个方法既能享受到 RDB 文件快速恢复的好处,又能享受到 AOF 只记录操作命令的简单优势, 实际环境中用的很多。
5.从持久化中恢复数据
数据的备份、持久化做完了,我们如何从这些持久化文件中恢复数据呢?如果一台服务器上有既有RDB文件,又有AOF文件,该加载谁呢?
其实想要从这些文件中恢复数据,只需要重新启动Redis即可。我们还是通过图来了解这个流程:
- Redis重启时判断是否开启AOF,如果开启了AOF,那么就优先加载AOF文件;
- 如果AOF存在,那么就去加载AOF文件,加载成功的话Redis重启成功,如果AOF文件加载失败,那么会打印日志表示启动失败,此时可以去修复AOF文件后重新启动;
- 若AOF文件不存在,那么Redis就会转而去加载RDB文件,如果RDB文件不存在,Redis直接启动成功;
- 如果RDB文件存在就会去加载RDB文件恢复数据,如加载失败则打印日志提示启动失败,如加载成功,那么Redis重启成功,且使用RDB文件恢复数据;
那么为什么会优先加载AOF呢?因为AOF保存的数据更完整,通过上面的分析我们知道AOF基本上最多损失1s的数据。