利用Opencv实现人像迁移

news2025/1/19 11:27:21

前言: Hello大家好,我是Dream。 今天来学习一下如何使用Opencv实现人像迁移,欢迎大家一起参与探讨交流~

本文目录:

  • 一、实验要求
  • 二、实验环境
  • 三、实验原理及操作
    • 1.照片准备
    • 2.图像增强
    • 3.实现美颜功能
    • 4.背景虚化
    • 5.图像二值化处理
    • 6.人像迁移
  • 四、实验结果
    • 1.原图、空间直方图均衡化后图像
    • 2.美颜后的人物图像与更改后的风景图像
    • 3.人像二值图
    • 4.人像迁移图
  • 五、结果分析
  • 六、附录代码
  • 七、实验报告

一、实验要求

利用Python和Opencv算法,实现下述功能:

  • 从网上下载一张纯色背景前的老人面部照片,并且要求背景颜色与皮肤、衣服的颜色区别较大。
  • 准备一张风景图片。
  • 利用图像增强算法处理人像照片,以提升照片的品质。
  • 利用图像处理算法去除老人面部的皱纹或色斑,实现美颜功能。
  • 利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化。
  • 利用图像处理算法将步骤4得到的人像图像进行二值化处理,人像部分为0,背景部分为1。
  • 利用步骤6得到的二值图像将步骤5得到的风景图像中用于合成人像区域的像素置为黑色后,与步骤4得到的人像图像进行合成,实现人像迁移。

撰写实验报告,将上述处理的原理与处理流程进行介绍;保存上述每一步的结果图像,并附加在实验报告中;最终对处理结果进行分析,并附加程序

二、实验环境

解释器:Python3.9、开发环境:PyCharm

三、实验原理及操作

1.照片准备

老人照片(上)、风景照片(下)
在这里插入图片描述

2.图像增强

图像增强使用自适应直方图均衡化操作。
因为原始图像为RGB彩色图像,直接使用直方图均衡化操作后会使颜色失真,故先将原始图像转化到HSI空间,对其中I通道(亮度)进行直方图均衡化,再转回RGB空间,这就实现了彩色图像的直方图均衡化,图像的亮度直方图会分布的更加均衡。如果在 RGB 彩色空间内完成直方图均衡化的,虽然的确有将原图中的阴暗部分变得明亮起来,但是颜色的失真也是比较严重的。在均衡化过程中不仅改变了亮度,也改变了彩色,产生了不正确的彩色。
在 HSI 彩色空间均衡化方法得到的结果图像效果是比较好的,整个图像都有效的加亮了,而彩色本身(色调)是不变的。这里使用的是自适应直方图均衡化,能够降低图像的全局依赖性,更多的保留图像的局部特征。

3.实现美颜功能

磨皮算法的功能就是消除脸部的斑点、瑕疵或者杂色,使得人物脸部更加细腻,轮廓更加清晰。 在实际的人脸磨皮中,一般还包含不同程度的预处理。我们使用传统的方法先对人脸中的脸部皮肤区域进行提取。基于皮肤的颜色特性,我们将图像转换到HSV色域,然后对逐像素点阈值判断,分离出了人脸面部皮肤像素点集合。在代码运行中,我们先对整张图片进行了双边滤波,然后将双边滤波结果和原图片输入原函数,使用皮肤像素点判断的方法,将原图中皮肤的像素替换成了对应的双边滤波后的像素。使用双边滤波,能够使滤波算法在处理人脸皮肤时,不对其它器官,如嘴唇,眼睛,眉毛等造成影响,同时不会干扰到背景。
注意滑动窗口的大小和双边方差的参数不宜设置的过大,否则会造成磨皮效果模糊或者过于磨皮。 同时设置过小,磨皮效果不明显,我们使用的是参数是:15*3,这样可以很好的实现我们想要的效果。

4.背景虚化

利用图像处理算法中的均值滤波处理风景图片,使风景图片变得模糊,实现背景虚化。然后再利用cv2.resize方法将风景图片尺寸调整为与人像图片一致,便于之后进行人像迁移。

5.图像二值化处理

获取纯色背景的RGB值,遍历整张图片,颜色接近背景颜色的像素点置为1,其余部分置为0。
同时我也想到了第二种方法,就是额外准备一张没有人像的纯色背景的图片,将原始图片与背景图片做减法并取绝对值,背景部分两张图片RGB值相似相减后趋近于0,其余部分不为0。这里注意的是由于设备原因,使用手机拍摄的背景图会因人像的离开而自动补光改变亮度,故在这里额外使用了亮度增强算法,将转化为HSI空间的背景图I通道乘系数1.25,再转回RGB空间,实现亮度补足。相减后将近似于0的像素点置为1,其余部分置为0,实现图片二值化操作。

6.人像迁移

首先将上述二值化图片进行中值滤波处理,去除一些可能存在的噪声点(黑色区域中的白色点或白色区域中的黑色点),然后进行腐蚀操作,去毛刺儿,腐蚀边界,一定的腐蚀膨胀操作使人像更加贴合。将二值化图片中人像部分置为1,其余部分置为0,与原始图片相乘后即可得到背景为黑色,人像部分正常的图片。
将虚化后的风景图片与人像部分为0、背景部分为1的二值图相乘,即可得到人像区域置为黑色的风景图。再将该图与上一步得到的背景为黑、人像不变的图片相加,即可得到人像迁移后的图片。

四、实验结果

1.原图、空间直方图均衡化后图像

图1 原图(左)、I空间直方图均衡化后图像(右)对比图
在这里插入图片描述

2.美颜后的人物图像与更改后的风景图像

图2、图3美颜后的人物图像(左)与更改尺寸并虚化后的风景图像(右)

3.人像二值图

图4、图5 经过图像处理的人像二值图
在这里插入图片描述

4.人像迁移图

图6、图7 人像部分为黑风景图(左)与人像迁移图(右)
在这里插入图片描述

五、结果分析

对亮度空间进行直方图均衡化操作后,人脸部分亮度明显增强,一些特征更加清晰可辨,说明图像增强效果良好。人像图片的二值化处理,但相较于法二,法一只能够对单一纯色背景进行操作,若背景中有噪声点(如白墙上的黑色污渍等)效果就会变差。但对于本次实验而言,我们采用的是方法一,因为我们的背景完全是白色,我们便可以十分准确地得到我们想要的效果。人像迁移的过程中可能存在白边,这时使用腐蚀膨胀操作将人像收缩,可实现消除白边的操作。最后人像迁移效果良好。

六、附录代码

# @Time : 2022/10/31 16:18
# @Author : 是Dream呀
# @File : 图像增强与合成.py
import cv2
import numpy as np

# 图片展示函数
def show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 1.自适应直方图均衡化进行图像增强
def hist(image):
    img = image.copy()
    # 先转换到 HSI 色彩空间,再将处理后的结果转换到 RGB 色彩空间。
    img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)
    I = img[:, :, 1]
    clahe = cv2.createCLAHE(clipLimit=1)  # 自适应直方图均衡化
    img[:, :, 1] = clahe.apply(img[:, :, 1])  # 将cv2.createCLAHE()应用到每个通道上。
    show('Equalization', np.hstack((I, img[:, :, 1])))
    img = cv2.cvtColor(img, cv2.COLOR_HLS2BGR)
    return img

IMG = cv2.imread('1.png')
IMG = cv2.resize(IMG, (422,496))
show('Original image', IMG)
IMG_new = hist(IMG)  # 自适应直方图均衡化进行图像增强
show('Contrast', np.hstack((IMG, IMG_new)))
cv2.imwrite('img1.jpg', np.hstack((IMG, IMG_new)))

# 2.图像美化
# 双边滤波
dst = cv2.bilateralFilter(IMG_new, 15, 35, 35)
show('Beauty', dst)
cv2.imwrite('img2.jpg', dst)

# 3.利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化
test = cv2.imread('2.png')
test = cv2.blur(test, (9, 9))  # 使用均值滤波处理
test = cv2.resize(test, (422,496))  # 将风景图片尺寸调整为与人像图片一致
show('Falsification', test)
cv2.imwrite('img3.jpg', test)

# 4.对图像进行二值化处理
img = IMG.copy()
print(len(img))
print(len(img[0]))
print(len(img[1]))
for i in range(len(img)):  # 获取纯色背景的RGB值,遍历整张图片
    for j in range(len(img[1])):
        if 255 == IMG[i][j][0] and 255 == IMG[i][j][1] and 255 == IMG[i][j][2]:  # 颜色接近背景颜色的像素点置为1,其余部分置为0
            img[i][j] = 255
        else:
            img[i][j] = 0

# 5.人像迁移
# 中值滤波处理
img = cv2.medianBlur(img, 3)
# 先进行腐蚀操作,再做膨胀操作
kernel = np.ones((3, 3), np.uint8)  # 腐蚀操作,去毛刺儿,腐蚀边界
img = cv2.dilate(img, kernel, iterations=1)
show('Handle', img)
cv2.imwrite('img4.jpg', img)

img_t = np.where(img == 0, 1, 0)  # 人像部分置为1,其余部分置为0
img = np.uint8(img_t * IMG_new)  # 与原始图片相乘
show('Opposite Handle', img)
cv2.imwrite('img5.jpg', img)  # 背景为黑、人像不变的图片

# 像素值0和1交换 等价于img_t = np.where(img_t == 0, 1, 0)
img_t = np.where(img_t == 1, 2, img_t)
img_t = np.where(img_t == 0, 1, img_t)
img_t = np.where(img_t == 2, 0, img_t)
test = np.uint8(test * img_t)  # 得到人像区域置为黑色的风景图
show('Processed landscape map',test)
cv2.imwrite('img6.jpg',test)

# 相加得到迁移后的图像
test = test + img
show('Transfer', test)
cv2.imwrite('img7.jpg', test)

七、实验报告

这里是完整的实验报告–图像处理实战–Opencv实现人像迁移完整实验报告,需要的同学自行取走~

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/895986.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

操作系统-笔记-第二章-进程调度

目录 二、第二章——【进程调度】 1、调度的概念 (1)五状态和七状态(就绪挂起、阻塞挂起) (2)三层调度 (高级、中级、低级) (3)总结 2、调度的切换 &a…

Vue--》打造个性化医疗服务的医院预约系统(六)

今天开始使用 vue3 + ts 搭建一个医院预约系统的前台页面,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关…

RGOS日常管理操作

RGOS日常管理操作 一、前言二、RGOS平台概述2.1、锐捷设备的常用登陆方式2.2、使用Console登入2.3、Telnet远程管理2.4、SSH远程管理2.5、登陆软件:SecureCRT 三、CLI命令行操作3.1、CLI命令行基础3.2、CLI模式3.3、CLI模式互换3.4、命令行特性3.4.1、分屏显示3.4.2…

(六)、深度学习框架中的算子

1、深度学习框架算子的基本概念 深度学习框架中的算子(operator)是指用于执行各种数学运算和操作的函数或类。这些算子通常被用来构建神经网络的各个层和组件,实现数据的传递、转换和计算。 算子是深度学习模型的基本组成单元,它们…

07-微信小程序-注册页面-模块化

07-微信小程序-注册页面 文章目录 注册页面使用 Page 构造器注册页面参数Object初始数据案例代码 生命周期回调函数组件事件处理函数setData()案例代码 生命周期模块化 注册页面 对于小程序中的每个页面,都需要在页面对应的 js 文件中进行注册,指定页面…

Ribbon 源码分析

Ribbon 源码分析 Ribbon Debug 分析 断点 LoadBalancerInterceptor LoadBalancerInterceptor 实现了 ClientHttpRequestInterceptor 接口,重写了其中的 intercept 方法,用来拦截请求; 获取原始的 uri 和 服务名,调用 LoadBalanc…

Spring Bean的生命周期总结(包含面试题)

目录 一、Bean的初始化过程 1. 加载Spring Bean 2. 解析Bean的定义 3. Bean属性定义 4. BeanFactoryPostProcessor 扩展接口 5. 实例化Bean对象 6. Aware感知 7. 初始化方法 8. 后置处理 9. destroy 销毁 二、Bean的单例与多例模式 2.1 单例模式(Sin…

[国产MCU]-W801开发实例-按键与GPIO输入

按键与GPIO输入 文章目录 按键与GPIO输入1、硬件准备2、软件准备3、驱动实现4、驱动测试在前面的文章中,我们成功点亮了LED,同时也知道W801的GPIO是可软件配置的。在这里,将详细介绍如何通过按键控制LED。 1、硬件准备 W801开发板一块微动开关一个10K电阻一个导线若干1uF电容…

JavaScript简介--语句--变量

目录 JavaScript简介 为什么学习 JavaScript JavaScript与ECMAScript的关系 JavaScript版本 JavaScript语句、标识符 语句 标识符 JavaScript保留关键字 变量 变量的命名规则 数据类型 变量的重新赋值 变量提升 运算符 条件语句 循环语句 JavaScript简介 JavaScri…

【RabbitMQ】RabbitMQ整合SpringBoot案例

文章目录 1、前情提要【RabbitMQ】2、RabbitMQ-SpringBoot案例 -fanout模式2.1 实现架构总览2.2 具体实现2.2.1生产者2.2.1消费者 1、前情提要【RabbitMQ】 【RabbitMQ】消息队列-RabbitMQ篇章 RabbitMQ实现流程 2、RabbitMQ-SpringBoot案例 -fanout模式 2.1 实现架构总览…

时域和频域

时 域 时域即时间域,是指以时间作为自变量,振幅作为因变量,在二维坐标图中即 横轴为时间,纵轴为振幅 下面举出例子: 频率为 2 H z 2Hz 2Hz振幅为 10 V 10V 10V 频 域 同理频域为频率为自变量即横轴 ,对于…

01信号和系统

目录 一、信号 1.什么是信号 2.信号的分类 (1)确定信号与随机信号 (2)连续时间信号与离散时间信号 (3)周期信号和非周期信号 (4)功率信号与能量信号 归一化能量的定义 归一化功率的定义 二、系统 1.什么是系统 2.系统的分类 (1)连续时间系统和离散时间系统 (2)线…

【PCL-8】方向包围盒OBB

AABB包围盒:边平行于坐标轴的最小六面体; 方向包围盒OBB:相对于坐标轴方向任意的最小立方体。 最小包围盒计算流程: 1、利用PCA主元分析法获得点云的三个主方向,获取质心,计算协方差,得到协方…

AI聊天机器人原来有这么多作用

AI聊天机器人是一种能够模拟人类对话并利用人工智能技术进行自主学习和适应的计算机程序。它们能够根据用户的输入内容来分析用户的需求,并提供相应的回答和建议。今天looklook就来和大家详细讲一下AI聊天机器人到底有什么作用吧。 AI聊天机器人的作用 1、客户服务…

【springboot】mongoTemplate增删改查操作

目录 一、代码示例1.1 pom依赖1.2 application配置1.3 controller1.4 service 二、截图示例2.1 新增2.2 修改2.3 详情2.4 分页2.5 删除 一、代码示例 1.1 pom依赖 <!-- mongodb --> <dependency><groupId>org.springframework.boot</groupId><art…

2023 年 4 款适用于安卓手机的最佳 PDF 转 Word 转换器

尝试在 Android 上将 PDF 文档转换为 Word 文件&#xff1f;好吧&#xff0c;您可能会发现要让它发挥作用几乎是不可能的&#xff0c;至少在没有任何额外工具的情况下是这样。Web 上有用于此类转换的选项&#xff0c;但本地不一定会发生任何情况&#xff08;可能除了一个应用程…

金融语言模型:FinGPT

项目简介 FinGPT是一个开源的金融语言模型&#xff08;LLMs&#xff09;&#xff0c;由FinNLP项目提供。这个项目让对金融领域的自然语言处理&#xff08;NLP&#xff09;感兴趣的人们有了一个可以自由尝试的平台&#xff0c;并提供了一个与专有模型相比更容易获取的金融数据。…

axios / fetch 实现 stream 流式请求

axios 是一个支持node端和浏览器端的易用、简洁且高效的http库。本文主要介绍 axios 如何实现 stream 流式请求&#xff0c;注意这里需要区分 node 环境和浏览器环境。 一、node端 代码演示&#xff1a; const axios require(axios);axios({method: get,url: http://tiven.c…

intern()的使用和理解

如果不是用双引号声明的String对象&#xff0c;可以使用String提供的intern方法&#xff1a;intern方法会从字符串常量池中查询当前字符串是否存在&#xff0c;若不存在就会将当前字符串放入常量池中。比如&#xff1a;String myinfo new String&#xff08;"I Love CSDN…

网络安全--负载均衡

负载均衡 webshell实践 一、负载均衡配置 1.在全局的http下写下它&#xff1a; upstream nginx_boot{# 30s内检查心跳发送两次包&#xff0c;未回复就代表该机器宕机&#xff0c;请求分发权重比为1:2server 192.168.0.000:8080 weight100 max_fails2 fail_timeout30s; ser…